OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 12 — Apr. 20, 2010
  • pp: 2339–2346

Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation

Fabian Duerr, Youri Meuret, and Hugo Thienpont  »View Author Affiliations


Applied Optics, Vol. 49, Issue 12, pp. 2339-2346 (2010)
http://dx.doi.org/10.1364/AO.49.002339


View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization’s influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

© 2010 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(080.0080) Geometric optics : Geometric optics
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy
(080.4298) Geometric optics : Nonimaging optics

History
Original Manuscript: January 21, 2010
Revised Manuscript: March 14, 2010
Manuscript Accepted: March 22, 2010
Published: April 14, 2010

Citation
Fabian Duerr, Youri Meuret, and Hugo Thienpont, "Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation," Appl. Opt. 49, 2339-2346 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-12-2339


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Swanson, “The promise of concentrators,” Prog. Photovolt. Res. Appl.  8, 93–111 (2000).
  2. R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer Verlag, 2001).
  3. C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Peña, V. Andreev, V. Khvostikov, and V. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices  48, 840–844 (2001). [CrossRef]
  4. A. Royne, C. Dey, and D. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Solar Energy Mater. Sol. Cells  86, 451–483 (2005). [CrossRef]
  5. K. Araki, H. Uozumi, and M. Yamaguchi, “A simple passive cooling structure and its heat analysis for 500×concentrator PV module,” in Conference Record IEEE Photovoltaic Specialists Conference (IEEE, 2002), Vol.  29, pp. 1568–1571.
  6. S. Kurtz, “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” Tech. Rep. NREL/TP-520–43208 (National Renewable Energy Laboratory, 2009).
  7. A. Davis, F. Kühnlenz, and R. Business, “Optical design using Fresnel lenses,” Optik Photonik  4, 52–55 (2007).
  8. J. Egger, “Use of Fresnel lenses in optical systems: some advantages and limitations,” Proc. SPIE   193, 63 (1979).
  9. F. Dubois, M. Novella Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt.  43, 1131–1139 (2004). [CrossRef]
  10. J. Liu, A. Caley, A. Waddie, and M. Taghizadeh, “Comparison of simulated quenching algorithms for design of diffractive optical elements,” Appl. Opt.  47, 807–816 (2008). [CrossRef]
  11. S. Sinzinger and M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt.  34, 5970–5976 (1995). [CrossRef]
  12. M. Rossi, R. Kunz, and H. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt.  34, 5996–6007 (1995). [CrossRef]
  13. S. Kasarova, N. Sultanova, C. Ivanov, and I. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.  29, 1481–1490 (2007).
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  15. P. Van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica  1, 201–210 (1934).
  16. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica  5, 785–795 (1938).
  17. H. Hopkins, “The concept of partial coherence in optics,” Proc. R. Soc. London. Ser. A  1, 263–277 (1951).
  18. P. Einziger, S. Raz, and M. Shapira, “Gabor representation and aperture theory,” J. Opt. Soc. Am. A  3, 508–522 (1986). [CrossRef]
  19. J. Arnaud, “Representation of Gaussian beams by complex rays,” Appl. Opt.  24, 538–543 (1985). [CrossRef]
  20. A. Greynolds, “Propagation of general astigmatic Gaussian beams along skew ray paths,” Proc. SPIE  560, 33–50 (1985).
  21. A. Greynolds, “Vector-formulation of ray-equivalent method for general Gaussian beam propagation,” Proc. SPIE  679, 129–133 (1986).
  22. A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Solar Energy Mater. Sol. Cells  84, 19–69(2004). [CrossRef]
  23. J. R. Biles, “High concentration, spectrum splitting, broad bandwidth, hologram photovoltaic solar collector,” U.S. patent 2009/0114266A1 (7 May 2009).
  24. E. Kritchman, A. Friesem, and G. Yekutieli, “Highly concentrating Fresnel lenses,” Appl. Opt.  18, 2688–2695 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited