OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2879–2890

Modulation transfer function measurement of a multichannel optical system

Florence de la Barrière, Guillaume Druart, Nicolas Guérineau, Jean Taboury, Jérôme Primot, and Joël Deschamps  »View Author Affiliations


Applied Optics, Vol. 49, Issue 15, pp. 2879-2890 (2010)
http://dx.doi.org/10.1364/AO.49.002879


View Full Text Article

Enhanced HTML    Acrobat PDF (1611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method to measure the modulation transfer function (MTF) beyond the Nyquist frequency of a multichannel imaging system for which all the channels have parallel optical axes. Such a multichannel optical system produces a set of undersampled subimages. If the subimages contain nonredundant information, high spatial frequencies are folded between low spatial frequencies, leading to the possible extraction of frequencies higher than the Nyquist frequency. The measurement of the MTF of the multichannel system leads to the estimation of the resolution enhancement of the final image that can be obtained by applying a postprocessing algorithm to the collection of undersampled subimages. Experimental images are presented to validate this method.

© 2010 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.3080) Imaging systems : Infrared imaging
(110.4100) Imaging systems : Modulation transfer function
(110.4190) Imaging systems : Multiple imaging
(110.4155) Imaging systems : Multiframe image processing
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Imaging Systems

History
Original Manuscript: January 28, 2010
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 9, 2010
Published: May 14, 2010

Citation
Florence de la Barrière, Guillaume Druart, Nicolas Guérineau, Jean Taboury, Jérôme Primot, and Joël Deschamps, "Modulation transfer function measurement of a multichannel optical system," Appl. Opt. 49, 2879-2890 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-15-2879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989). [CrossRef] [PubMed]
  2. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003). [CrossRef]
  3. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310(2004). [CrossRef] [PubMed]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005). [CrossRef] [PubMed]
  5. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Express 13, 889–903 (2005). [CrossRef] [PubMed]
  6. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos peckii vision,” Appl. Opt. 48, 3368–3374 (2009). [CrossRef] [PubMed]
  7. L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709(2007). [CrossRef]
  8. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813(2001). [CrossRef]
  9. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008). [CrossRef] [PubMed]
  10. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12, 1643–1655 (2004). [CrossRef] [PubMed]
  11. K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006). [CrossRef] [PubMed]
  12. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719–1727 (2004). [CrossRef] [PubMed]
  13. K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008). [CrossRef] [PubMed]
  14. R. Barnard, V. P. Pauca, T. C. Torgersen, R. J. Plemmons, S. Prasad, J. van der Gracht, J. Nagy, J. Chung, G. Behrmann, S. Mathews, and M. Mirotznik, “High-resolution iris image reconstruction from low-resolution imagery,” Proc. SPIE 6313, D1–D13 (2006).
  15. J. Fanning, J. Miller, J. Park, G. Tener, J. Reynolds, P. O’Shea, C. Halford, and R. Driggers, “IR system field performance with superresolution,” Proc. SPIE 6543, 65430Z (2007). [CrossRef]
  16. M. D. Robinson and D. G. Stork, “Joint digital-optical design of superresolution multiframe imaging systems,” Appl. Opt. 47, B11–B20 (2008). [CrossRef] [PubMed]
  17. K. Krapels, R. G. Driggers, E. Jacobs, S. Burks, and S. Young, “Characteristics of infrared imaging systems that benefit from superresolution reconstruction,” Appl. Opt. 46, 4594–4603(2007). [CrossRef] [PubMed]
  18. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006). [CrossRef] [PubMed]
  19. F. Champagnat, G. Le Besnerais, and C. Kulcsàr, “Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework,” J. Opt. Soc. Am. A 26, 1730–1746 (2009). [CrossRef]
  20. A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007). [CrossRef] [PubMed]
  21. G. Druart, N. Guérineau, R. Haïdar, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, J. Deschamps, and E. Lambert, “MULTICAM: a miniature cryogenic camera for infrared detection,” Proc. SPIE 6992, 699215 (2008).
  22. C.-L. Tisse, F. Guichard, and F. Cao, “Does resolution really increase image quality?” Proc. SPIE 6817, 68170Q (2008). [CrossRef]
  23. A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits Syst. 24, 652–654 (1977). [CrossRef]
  24. S. E. Reichenbach, S. K. Park, and R. Rarayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991). [CrossRef]
  25. M. A. Chambliss, J. A. Dawson, and E. J. Borg, “Measuring the MTF of undersampled staring IRFPA sensors using 2D discrete Fourier transform,” Proc. SPIE 2470, 312–324 (1995). [CrossRef]
  26. G. C. Holst, “Infrared imaging system testing,” in Infrared and Electro-optical Systems Handbook, M.C.Dudzik, ed. (SPIE, 1993), Vol. 4, pp. 223–232.
  27. M. Chambon, J. Primot, and M. Girard, “Modulation transfer function assessment for sampled imaging system: application of the generalized line spread function to a standard infrared camera,” Infrared Phys. Technol. 37, 619–626 (1996). [CrossRef]
  28. N. Guérineau, J. Primot, M. Tauvy, and M. Caes, “Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target,” Appl. Opt. 38, 631–637 (1999). [CrossRef]
  29. J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt. 45, 1203–1214 (2006). [CrossRef] [PubMed]
  30. M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translationnal motion and common space-invariant blur,” IEEE Trans. Image Process. 10, 1187–1193(2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited