OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: D145–D156

Assessment of a liquid lens enabled in vivo optical coherence microscope

Supraja Murali, Panomsak Meemon, Kye-Sung Lee, William P. Kuhn, Kevin P. Thompson, and Jannick P. Rolland  »View Author Affiliations


Applied Optics, Vol. 49, Issue 16, pp. D145-D156 (2010)
http://dx.doi.org/10.1364/AO.49.00D145


View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

© 2010 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.1655) Microscopy : Coherence tomography
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Microscopy

History
Original Manuscript: November 3, 2009
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 18, 2010
Published: May 28, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Supraja Murali, Panomsak Meemon, Kye-Sung Lee, William P. Kuhn, Kevin P. Thompson, and Jannick P. Rolland, "Assessment of a liquid lens enabled in vivooptical coherence microscope," Appl. Opt. 49, D145-D156 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-16-D145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34, 145–147 (2009). [CrossRef] [PubMed]
  2. V. Kumar and R. S. Cotran, Robbins Basic Pathology(Saunders, 2003).
  3. P. Corcuff, C. Bertrand, and J. L. Leveque, “Morphometry of human epidermis in vivo by real-time confocal microscopy,” Arch. Dermatol. Res. 285, 475–481 (1993). [CrossRef] [PubMed]
  4. J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003). [CrossRef] [PubMed]
  5. M. Gniadecka and G. B. E. Jemec, “Quantitative evaluation of chronological ageing and photo ageing in vivo: studies on skin echogenicity and thickness,” Br. J. Dermatol. 138, 815–821(1998). [CrossRef]
  6. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13, 1015–1024 (2005). [CrossRef] [PubMed]
  7. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997). [CrossRef]
  8. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
  9. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232, 123–128 (2004). [CrossRef]
  10. A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005). [CrossRef]
  11. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300nm,” Opt. Express 13, 10523–10538 (2005). [CrossRef] [PubMed]
  12. S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15, 15854–15862 (2007). [CrossRef] [PubMed]
  13. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010). [CrossRef] [PubMed]
  14. J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. Thompson, and K. S. Lee, “Gabor domain optical coherence microscopy,” Proc. SPIE , 7139, 71390F (2008). [CrossRef]
  15. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008). [CrossRef] [PubMed]
  16. W. T. Welford, “Thin lens aberrations,” in Aberrations of the Symmetrical Optical System (Academic, 1974), pp. 198–199.
  17. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm,” Phys. Med. Biol. 51, 1479–1490 (2006). [CrossRef] [PubMed]
  18. K. P. Thompson, Aberration fields in tilted and decentered optical systems (University of Arizona, Tucson, 1980).
  19. V. N. Mahajan, Optical Imaging and Aberrations, 2nd ed. (SPIE Press, 2004), Vol. 2.
  20. K. S. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44, 4009–4022 (2005). [CrossRef] [PubMed]
  21. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  22. S. Kuiper, B. H. Hendriks, L. J. Huijbregts, A. M. Hirschberg, C. A. Renders, and M. A. van As, “Variable-focus liquid lens for portable applications,” Proc. SPIE , 5523, 100–109 (2004). [CrossRef]
  23. A. R. Knuettel, J. M. Schmitt, R. Barnes, and J. R. Knutson, “Spatial localization using interfering photon density waves: contrast enhancement and limitations,” Proc. SPIE , 1888, 322–333 (1993). [CrossRef]
  24. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London Ser. A 365, 2829–2843 (2007). [CrossRef]
  25. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004). [CrossRef] [PubMed]
  26. V. V. Tuchin, “Optical clearing of tissues and blood,” J. Phys. D 38, 2497–2518 (2005). [CrossRef]
  27. S. Murali, “Gabor domain optical coherence microscopy,” Ph.D. Dissertation (University of Central Florida, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited