OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: D30–D61

High-speed optical coherence tomography: basics and applications

Maciej Wojtkowski  »View Author Affiliations


Applied Optics, Vol. 49, Issue 16, pp. D30-D61 (2010)
http://dx.doi.org/10.1364/AO.49.000D30


View Full Text Article

Enhanced HTML    Acrobat PDF (4498 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the past decade we have observed a rapid development of ultrahigh-speed optical coherence tomography (OCT) instruments, which currently enable performing cross-sectional in vivo imaging of biological samples with speeds of more than 100,000 A-scans/s. This progress in OCT technology has been achieved by the development of Fourier-domain detection techniques. Introduction of high-speed imaging capabilities lifts the primary limitation of early OCT technology by giving access to in vivo three-dimensional volumetric reconstructions on large scales within reasonable time constraints. As result, novel tools can be created that add new perspective for existing OCT applications and open new fields of research in biomedical imaging. Especially promising is the capability of performing functional imaging, which shows a potential to enable the differentiation of tissue pathologies via metabolic properties or functional responses. In this contribution the fundamental limitations and advantages of time-domain and Fourier-domain interferometric detection methods are discussed. Additionally the progress of high-speed OCT instruments and their impact on imaging applications is reviewed. Finally new perspectives on functional imaging with the use of state-of-the-art high-speed OCT technology are demonstrated.

© 2010 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
General Optical Instrumentation

History
Original Manuscript: November 30, 2009
Manuscript Accepted: January 11, 2010
Published: March 17, 2010

Virtual Issues
(2010) Advances in Optics and Photonics
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics
June 25, 2010 Spotlight on Optics

Citation
Maciej Wojtkowski, "High-speed optical coherence tomography: basics and applications," Appl. Opt. 49, D30-D61 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-16-D30


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  3. W.Drexler and J.G.Fujimoto, eds., Optical Coherence Tomography (Springer-Verlag, 2008).
  4. B.Bouma and G.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel-Dekker, 2002).
  5. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993). [CrossRef]
  6. M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).
  7. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003). [CrossRef]
  8. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004). [CrossRef]
  9. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005). [CrossRef]
  10. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004). [CrossRef]
  11. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003). [CrossRef]
  12. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008). [CrossRef]
  13. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004). [CrossRef]
  14. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004). [CrossRef]
  15. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004). [CrossRef]
  16. J. W. Goodman, Statistical Optics (Wiley, 1985).
  17. A. Fercher, Optics in Medicine, Biology and Environmental Research: Selected Contributions to the First International Conference on Optics Within Life Sciences (Manufacturing Research and Technology) (Elsevier, 1990), pp. 221–228.
  18. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  19. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  20. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
  21. G. Hausler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
  22. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997). [CrossRef]
  23. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005). [CrossRef]
  24. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002). [CrossRef]
  25. A. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
  26. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009). [CrossRef]
  27. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997). [CrossRef]
  28. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003). [CrossRef]
  29. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003). [CrossRef]
  30. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007). [CrossRef]
  31. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007). [CrossRef]
  32. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005). [CrossRef]
  33. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005). [CrossRef]
  34. M. H. Niemz, Laser-Tissue Interactions (Springer-Verlag, 1996).
  35. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
  36. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef]
  37. B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009). [CrossRef]
  38. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).
  39. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
  40. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009). [CrossRef]
  41. M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).
  42. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).
  43. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005). [CrossRef]
  44. B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
  45. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420(2008). [CrossRef]
  46. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004). [CrossRef]
  47. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008). [CrossRef]
  48. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by 2D heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816–818 (2003). [CrossRef]
  49. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998). [CrossRef]
  50. G. M. Dobre, A. G. Podoleanu, and R. B. Rosen, “Simultaneous optical coherence tomography—Indocyanine Green dye fluorescence imaging system for investigations of the eye’s fundus,” Opt. Lett. 30, 58–60 (2005). [CrossRef]
  51. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761(2003).
  52. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–182(2000). [CrossRef]
  53. K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A Pure Appl. Opt. 7, 368–373 (2005). [CrossRef]
  54. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006). [CrossRef]
  55. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).
  56. M. A. Parker, Physics of Optoelectronics (Taylor & Francis, 2005).
  57. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier-domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
  58. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183–2189(2003).
  59. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef]
  60. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486(1999). [CrossRef]
  61. B. E. Saleh and M. Teich, Fundamentals of Photonics(Wiley, 1991).
  62. J. Ballif, R. Gianotti, P. Chavanne, R. Walti, and R. P. Salathe, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997). [CrossRef]
  63. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996). [CrossRef]
  64. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326(1990). [CrossRef]
  65. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400 Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993). [CrossRef]
  66. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  67. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998). [CrossRef]
  68. T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).
  69. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008). [CrossRef]
  70. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).
  71. B. Golubovic, B. Bouma, G. Tearney, and J. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+ forsterite laser,” Opt. Lett. 22, 1704–1706 (1997). [CrossRef]
  72. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005). [CrossRef]
  73. W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).
  74. I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).
  75. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15, 1627–1638 (2007). [CrossRef]
  76. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
  77. J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006). [CrossRef]
  78. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006). [CrossRef]
  79. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier-domain mode locked lasers,” Opt Express 17, 9947–9961 (2009).
  80. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier-domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008). [CrossRef]
  81. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008). [CrossRef]
  82. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).
  83. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006). [CrossRef]
  84. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three-dimensional OCT images from retina and skin,” Opt. Express 7, 292–298 (2000). [CrossRef]
  85. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier-domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137(2005). [CrossRef]
  86. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006). [CrossRef]
  87. P. Koch, G. Huttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29, 1644–1646(2004). [CrossRef]
  88. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006). [CrossRef]
  89. S. Sanders, D. Mattison, L. Ma, J. Jeffries, and R. Hanson, “Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation,” Opt. Express 10, 505–514(2002).
  90. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier-domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33, 1318–1320(2008). [CrossRef]
  91. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, 2004).
  92. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).
  93. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
  94. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
  95. J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).
  96. R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).
  97. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004). [CrossRef]
  98. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006). [CrossRef]
  99. S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13, 444–452 (2005). [CrossRef]
  100. B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008). [CrossRef]
  101. M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009). [CrossRef]
  102. I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).
  103. R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).
  104. J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).
  105. T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).
  106. B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006). [CrossRef]
  107. B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).
  108. B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).
  109. B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).
  110. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).
  111. A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).
  112. R. Navarro, L. Gonzalez, and J. L. Hernandez, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23, 219–232 (2006). [CrossRef]
  113. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126, 537–542 (2008).
  114. L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13, 054054 (2008).
  115. D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).
  116. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007). [CrossRef]
  117. B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007). [CrossRef]
  118. I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).
  119. I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009). [CrossRef]
  120. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007). [CrossRef]
  121. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
  122. X. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl Optics 36, 144–149(1997).
  123. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998). [CrossRef]
  124. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997). [CrossRef]
  125. J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997). [CrossRef]
  126. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000). [CrossRef]
  127. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000). [CrossRef]
  128. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
  129. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003). [CrossRef]
  130. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
  131. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008). [CrossRef]
  132. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
  133. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt Express 17, 4166–4176 (2009).
  134. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1, 424–431(1997). [CrossRef]
  135. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004). [CrossRef]
  136. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007). [CrossRef]
  137. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452 (2008). [CrossRef]
  138. Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).
  139. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009). [CrossRef]
  140. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006). [CrossRef]
  141. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006). [CrossRef]
  142. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33, 836–838(2008). [CrossRef]
  143. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved three-dimensional retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009). [CrossRef]
  144. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32, 2918–2920 (2007). [CrossRef]
  145. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008). [CrossRef]
  146. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009). [CrossRef]
  147. T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004). [CrossRef]
  148. T. Akkin, D. P. Dave, H. G. Rylander, and T. E. Milner, “Non-contact sub-nanometer measurement of transient surface displacement during action potential propagation,” presented at SPIE Photonics West Conference, San Jose, California, USA, 22–27 January 2005.
  149. C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29, 2028–2030 (2004). [CrossRef]
  150. D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111, 304–327 (1950).
  151. T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93, 1347–1353 (2007). [CrossRef]
  152. A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).
  153. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997). [CrossRef]
  154. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002). [CrossRef]
  155. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).
  156. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218–1220 (2003). [CrossRef]
  157. K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).
  158. G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).
  159. G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).
  160. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).
  161. M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).
  162. K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).
  163. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).
  164. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006). [CrossRef]
  165. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Investig. Ophthalmol. Vis. Sci. 49, 713–719(2008).
  166. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007). [CrossRef]
  167. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17, 3861–3877 (2009). [CrossRef]
  168. A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).
  169. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15, 2288–2296 (1998). [CrossRef]
  170. U. S. Sathyam, B. W. Colston, Jr., L. B. Da Silva, and M. J. Everett, “Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths,” Appl. Opt. 38, 2097–2104 (1999). [CrossRef]
  171. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000). [CrossRef]
  172. D. L. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436–1438 (2003). [CrossRef]
  173. D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004). [CrossRef]
  174. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004). [CrossRef]
  175. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000). [CrossRef]
  176. S. Kray, F. Spoler, M. Forst, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34, 1970–1972 (2009). [CrossRef]
  177. S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).
  178. E. Goetzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008). [CrossRef]
  179. C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).
  180. E. Gotzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009). [CrossRef]
  181. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
  182. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008). [CrossRef]
  183. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1 μm probe,” Opt. Express 17, 12385–12396(2009). [CrossRef]
  184. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).
  185. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724–6738 (2006). [CrossRef]
  186. W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14, 7159–7171 (2006). [CrossRef]
  187. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16, 11052–11065 (2008). [CrossRef]
  188. B. E. Applegate and J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14, 9142–9155 (2006). [CrossRef]
  189. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett. 30, 2391–2393 (2005). [CrossRef]
  190. Y. Jiang, I. V. Tomov, Y. Wang, and Z. Chen, “High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon,” Appl. Phys. Lett. 86, 133901–133901(2005). [CrossRef]
  191. U. H. P. Haberland, V. Blazek, and H. J. Schrnitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).
  192. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005). [CrossRef]
  193. P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008). [CrossRef]
  194. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).
  195. D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003). [CrossRef]