OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 17 — Jun. 10, 2010
  • pp: 3259–3264

Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor

Antonin Miks, Jiri Novak, and Pavel Novak  »View Author Affiliations

Applied Optics, Vol. 49, Issue 17, pp. 3259-3264 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Noncontact optical metrology based on the chromatic confocal principle is becoming increasingly important for fast and accurate measurements of surface topography, distance, and layer thickness in engineering and industry. These sensors are based on the wavelength dependence of longitudinal chromatic aberration of optical systems, and the distance or thickness of the measured sample is coded into spectral information. We provide a theoretical analysis of a problem of the thickness measurement of transparent samples (glass plane-parallel plates or lenses) with respect to material dispersion. Our work deals with a description and analysis of induced measurement errors in the cases of measurement of the thickness of a plane-parallel plate and the central thickness of a lens. Relations are derived for a quantitative evaluation of these errors and a method is presented for minimizing the influence of these errors on the accuracy of measurement.

© 2010 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(260.2030) Physical optics : Dispersion

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 5, 2010
Revised Manuscript: May 4, 2010
Manuscript Accepted: May 12, 2010
Published: June 2, 2010

Antonin Miks, Jiri Novak, and Pavel Novak, "Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor," Appl. Opt. 49, 3259-3264 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984). [CrossRef]
  2. M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153(1992). [CrossRef]
  3. M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lens with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).
  4. H. J. Tiziani and H. M. Uhde, “3-Dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33, 1838–1843(1994). [CrossRef] [PubMed]
  5. H. J. Tiziani, R. Achi, and R. N. Krämer, “Chromatic confocal microscopy with microlenses,” J. Mod. Opt. 43, 155–163(1996). [CrossRef]
  6. S. Dobson, P. C. Sun, and Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997). [CrossRef] [PubMed]
  7. P. C. Lin, P. Sun, L. Zhu, and Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998). [CrossRef]
  8. D. Steudle, M. Wegner, and H. J. Tiziani, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39, 32–39 (2000). [CrossRef]
  9. S. Cha, P. C. Lin, L. Zhu, P. C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39, 2605–2613 (2000). [CrossRef]
  10. R. J. Garzón, J. Menese, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A Pure Appl. Opt. 6, 544–548 (2004). [CrossRef]
  11. A. K. Ruprecht, K. Korner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, “Chromatic confocal detection for high speed micro-topography measurements,” Proc. SPIE 5302, 53–60(2004). [CrossRef]
  12. P. Lücke, A. Last, J. Mohr, A. K. Ruprecht, W. Osten, H. Tiziani, and P. Lehmann, “Confocal micro-optical distance sensor for precision metrology,” Proc. SPIE 5459, 180–184 (2004). [CrossRef]
  13. A. K. Ruprecht, T. F. Wiesendanger, and H. J. Tiziani, “Chromatic confocal microscopy with a finite pinhole size,” Opt. Lett. 29, 2130–2132 (2004). [CrossRef] [PubMed]
  14. J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805–810 (2004). [CrossRef]
  15. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004). [CrossRef] [PubMed]
  16. J. W. McBride and C. Maul, “The 3D measurement and analysis of high precision surfaces using con-focal optical methods,” IEICE Trans. Electron. E87-C, 1261–1267 (2004).
  17. A. K. Ruprecht, C. Pruss, H. J. Tiziani, W. Osten, P. Lucke, A. Last, J. Mohr, and P. Lehmann, “Confocal micro-optical distance sensor: principle and design,” Proc. SPIE 5856, 128–135(2005). [CrossRef]
  18. M. Kunkel and J. Schulze, “Noncontact measurement of central lens thickness,” Glass Sci. Technol. 78, 2–4 (2005).
  19. J. Garzón, T. Gharbi, and J. Meneses, “Real time determination of the optical thickness and topography of tissues by chromatic confocal microscopy,” J. Opt. A Pure Appl. Opt. 10104028 (2008). [CrossRef]
  20. S. Li, T. Thorsen, Z. Xu, Z. P. Fang, J. Zhao, and S. F. Yoon, “Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy,” Appl. Opt. 48, 5088–5094 (2009). [CrossRef] [PubMed]
  21. B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80, 073706 (2009). [CrossRef] [PubMed]
  22. J. Novak and A. Miks, “Hyperchromats with linear dependence of longitudinal chromatic aberration on wavelength,” Optik (Jena) 116, 165–168 (2005). [CrossRef]
  23. http://www.frt-gmbh.com/.
  24. http://www.stilsa.com/.
  25. http://www.micro-epsilon.com/.
  26. http://www.nanofocus-us.com/.
  27. http://www.precitec.com/.
  28. M. Herzberger, Modern Geometrical Optics (Interscience, 1958).
  29. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2000).
  30. A. Miks, Applied Optics (Czech Technical U. Press, 2009). [PubMed]
  31. www.osram.com.
  32. www.philips.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited