OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 17 — Jun. 10, 2010
  • pp: 3311–3315

Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes

Xiaozhi Wang, Timothy D. Wilkinson, Mark Mann, Ken B. K. Teo, and William I. Milne  »View Author Affiliations

Applied Optics, Vol. 49, Issue 17, pp. 3311-3315 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reconfigurable liquid crystal microlenses employing arrays of multiwalled carbon nanotubes (MWNTs) have been designed and fabricated. The cells consist of arrays of 2 μm high MWNTs grown by plasma-enhanced chemical vapor deposition on silicon with a top electrode of indium tin oxide coated glass positioned 20 μm above the silicon and the gap filled with the nematic liquid crystal BLO48. Simulations have found that, while its nematic liquid crystal aligns with MWNTs within a distance of 10 nm , this distance is greatly enhanced by the application of an external electric field. Polarized light experiments show that light is focused with focal lengths ranging from 7 μm to 12 μm .

© 2010 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

Original Manuscript: March 17, 2010
Revised Manuscript: May 3, 2010
Manuscript Accepted: May 9, 2010
Published: June 7, 2010

Xiaozhi Wang, Timothy D. Wilkinson, Mark Mann, Ken B. K. Teo, and William I. Milne, "Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes," Appl. Opt. 49, 3311-3315 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Nose and S. Sato, “LCD devices obtained using scattering properties of microlens effects,” Proc. Soc. Inf. Disp. 32, 177–181 (1991).
  2. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999). [CrossRef]
  3. Y. Zhang, Y. Li, E. G. Kanterakis, A. Kats, X. J. Lu, R. Tolimieri, and N. P. Caviris, “Optical realization of wavelet transform for a one-dimensional signal,” Opt. Lett. 17, 210–212 (1992). [CrossRef] [PubMed]
  4. T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).
  5. T. Nose and S. Sato, “Application of liquid crystal microlens in optical fiber switch,” Trans. IEICE 75-C1, 155–163 (1992) (in Japanese).
  6. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989). [CrossRef]
  7. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001). [CrossRef]
  8. W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003). [CrossRef]
  9. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003). [CrossRef] [PubMed]
  10. T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008). [CrossRef]
  11. K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005). [CrossRef] [PubMed]
  12. I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phy. 97, 044309 (2005). [CrossRef]
  13. C. Y. Huang, C. Y. Hu, and H. C. Pan, “Electrooptical responses of carbon nanotube-doped liquid crystal devices,” Jpn. J. Appl. Phys. 44, 8077–8081 (2005). [CrossRef]
  14. I. S. Baik, S. Y. Jeon, and S. H. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Appl. Phy. Lett. 87, 263110 (2005). [CrossRef]
  15. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited