OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 18 — Jun. 20, 2010
  • pp: 3452–3457

Tunable two-dimensional photonic crystal couplers made of dielectric elastomer inclusions

Chun-Chih Wang and Lien-Wen Chen  »View Author Affiliations


Applied Optics, Vol. 49, Issue 18, pp. 3452-3457 (2010)
http://dx.doi.org/10.1364/AO.49.003452


View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a tunable directional coupler based on a two-dimensional photonic crystal made of dielectric elastomer rods embedded in air background. In the interaction region, the inclusions are a dielectric elastomer cylindrical actuator made of a hollow cylinder sandwiched between two compliant electrodes. By applying a voltage between the compliant electrodes, the radial strain of the silicon-made actuator and the coupling characteristics of the photonic crystal coupler are investigated. The coupling length of the photonic crystal coupler depends on the voltage applied between the electrodes, which is analyzed by the plane wave expansion method. Due to the radial strain of the dielectric elastomer under external voltage, the tunable photonic crystal coupler is realized. Numerical simulations obtained by the finite-difference time-domain method confirmed the feasibility of the tunable photonic crystal coupler.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: February 1, 2010
Revised Manuscript: May 14, 2010
Manuscript Accepted: May 19, 2010
Published: June 10, 2010

Citation
Chun-Chih Wang and Lien-Wen Chen, "Tunable two-dimensional photonic crystal couplers made of dielectric elastomer inclusions," Appl. Opt. 49, 3452-3457 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-18-3452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987). [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  5. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165 (2001). [CrossRef]
  6. H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature,” Opt. Commun. 219, 177–182 (2003). [CrossRef]
  7. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide,” J. Lightwave Technol. 19, 1970–1975 (2001). [CrossRef]
  8. C. Y. Liu and L. W. Chen, “The analysis of interaction region of elliptical pillars of a directional photonic crystal waveguide coupler,” Physica E (Amsterdam) 28, 185–190(2005). [CrossRef]
  9. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett. 84, 460–462 (2004). [CrossRef]
  10. C. Y. Liu and L. W. Chen, “Tunable photonic crystal waveguide Mach–Zehnder interferometer achieved by nematic liquid crystal phase modulation,” Opt. Express 12, 2616–2624(2004). [CrossRef] [PubMed]
  11. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A, Phys. 64, 77–85(1998). [CrossRef]
  12. R. E. Pelrine, R. D. Kornbluh, Q. Pei, and J. P. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000). [CrossRef] [PubMed]
  13. F. Carpi and D. D. Rossi, “Dielectric elastomer cylindrical actuators: electromechanical modeling and experimental evaluation,” Mater. Sci. Eng. C 24, 555–562 (2004). [CrossRef]
  14. R. E. Pelrine, R. D. Kornbluh, and G. Kofod, “High-strain actuator material based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000). [CrossRef]
  15. F. Carpi, A. Migliore, G. Serra, and D. De Rossi, “Helical dielectric elastomer actuators,” Smart Mater. Struct. 14, 1210–1216 (2005). [CrossRef]
  16. W. P. Yang and L. W. Chen, “The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator,” Smart Mater. Struct. 17, 015011–015016(2008). [CrossRef]
  17. M. Beck, F. Reto, and A. Stemmer, “Variable phase retarder made of a dielectric elastomer actuator,” Opt. Lett. 34, 803–805 (2009). [CrossRef] [PubMed]
  18. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express 17, 8542–8547 (2009). [CrossRef] [PubMed]
  19. F. Xiang, H. Wang, and X. Yao, “Dielectric properties of SrTiO3/POE flexible composites for microwave applications,” J. Euro. Ceram. Soc. 27, 3093–3097 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited