OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: 3640–3651

Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform

Krzysztof Pokorski and Krzysztof Patorski  »View Author Affiliations

Applied Optics, Vol. 49, Issue 19, pp. 3640-3651 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An application of the continuous wavelet transform to modulation extraction of additive moiré fringes and time-average patterns is proposed. We present numerical studies of the influence of various param eters of the wavelet transformation itself and a fringe pattern under study on the demodulation results. To facilitate the task of demodulating a signal with zero crossing values, a two-frame approach for wavelet ridge extraction is proposed. Experimental studies of vibration mode patterns by time-average interferometry provide excellent verification of numerical findings. They compare very well with the results of our previous investigations using the temporal phase-shifting method widely considered as the most accurate one. No need of performing phase shifting represents significant simplification of the experimental procedure.

© 2010 Optical Society of America

OCIS Codes
(100.7410) Image processing : Wavelets
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 25, 2010
Manuscript Accepted: June 4, 2010
Published: June 22, 2010

Krzysztof Pokorski and Krzysztof Patorski, "Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform," Appl. Opt. 49, 3640-3651 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Kobayashi, Handbook on Experimental Mechanics, 2nd ed. (SEM, 1993).
  2. K. Patorski, Handbook of the Moiré Fringe Technique(Elsevier, 1993).
  3. O. Bryngdahl, “Characteristics of superposed patterns in optics,” J. Opt. Soc. Am. 66, 87–94 (1976). [CrossRef]
  4. C. Forno and M. Whelan, “Digital moiré subtraction in optical engineering,” Opt. Eng. 40, 2199–2208 (2001). [CrossRef]
  5. J. Wasowski, “Moiré topographic maps,” Opt. Commun. 2, 321–323 (1970). [CrossRef]
  6. J. D. Hovanesian and Y. Hung, “Moiré contour-sum, contour-difference and vibration analysis of arbitrary objects,” Appl. Opt. 10, 2734–2738 (1971). [CrossRef] [PubMed]
  7. M. Ragulskis, R. Maskeliunas, L. Ragulskis, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962 (2005). [CrossRef]
  8. G. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt. 33, 775–786 (1994). [CrossRef] [PubMed]
  9. M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain 45, doi: 10.1111/j.1475–1305.2009.00625x (2009) and references therein. [CrossRef]
  10. S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001). [CrossRef]
  11. A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry in the MEMS field,” Proc. SPIE 5145, 1–16(2003). [CrossRef]
  12. L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003). [CrossRef]
  13. K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng. 44, 065601 (2005). [CrossRef]
  14. K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng. 45, 085602 (2006). [CrossRef]
  15. A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt. 46, 4613–4624 (2007). [CrossRef] [PubMed]
  16. H. Osterberg, “An interferometer method of studying the vibrations of an oscillating quartz plate,” J. Opt. Soc. Am. 22, 19–35 (1932). [CrossRef]
  17. J. Lim, J. Kim, and M. Chung, “Additive type moiré with computer image processing,” Appl. Opt. 28, 2677–2680 (1989). [CrossRef] [PubMed]
  18. R. Eschbach, “Generation of moiré of nonlinear transfer characteristics,” J. Opt. Soc. Am. A 5, 1828–1835 (1988). [CrossRef]
  19. L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control 35, 249–254 (2006).
  20. M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng. 47, 768–773 (2009). [CrossRef]
  21. S. Malat, A Wavelet Tour of Signal Processing (Academic, 1999).
  22. J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge U. Press, 2008).
  23. Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45, 045601 (2006). [CrossRef]
  24. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006). [CrossRef] [PubMed]
  25. B. Chen and C. Basaran, “Automatic full strain field moiré interferometry measurement with nano-scale resolution,” Exp. Mech. 48, 665–673 (2008). [CrossRef]
  26. M. Li, C. Quan, and C. Tai, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40, 920–929 (2008). [CrossRef]
  27. S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369–3377 (2008). [CrossRef] [PubMed]
  28. C. J. Tay, C. Quan, Y. Fu, and Y. Huang, “Instantaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis,” Appl. Opt. 43, 4164–4171 (2004). [CrossRef] [PubMed]
  29. C. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005). [CrossRef] [PubMed]
  30. R.-S. Chang, J.-Y. Sheu, C.-H. Lin, and H.-C. Liu, “Analysis of CCD moire pattern for micro-range measurements using the wavelet transform,” Opt. Laser Technol. 35, 43–47 (2003). [CrossRef]
  31. C.-M. Liu, L.-W. Chen, and C.-C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology 17, 4359–4366 (2006). [CrossRef]
  32. K. Qian, H. Seah, and A. Asundi, “Instantaneous frequency and its application to strain extraction in moiré interferometry,” Appl. Opt. 42, 6504–6513 (2003). [CrossRef]
  33. K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003). [CrossRef]
  34. H. Liu, A. N. Cartwright, and C. Basaran, “Moiré interferogram phase extraction: a ridge detection algorithm for continous wavelet transforms,” Appl. Opt. 43, 850–857 (2004). [CrossRef] [PubMed]
  35. L. Debnath, Wavelets and Signal Processing (Birkhauser, 2003). [CrossRef]
  36. M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002). [CrossRef]
  37. J. Kirby, “Which wavelet best reproduces the Fourier power spectrum?” Comput. Geosci. 31, 846–864 (2005). [CrossRef]
  38. A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008). [CrossRef]
  39. M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009). [CrossRef]
  40. A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison,” J. Phys. Conf. Ser. 76, 012045(2007). [CrossRef]
  41. A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007). [CrossRef] [PubMed]
  42. Z. Wang and H. Ma, “Automatic analysis of photomechanics interferogram using wavelet transform,” in Proceedings of 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Society of Experimental Mechanics, 2005).
  43. B. Telfer and H. H. Szu, “New wavelet transform normalization to remove frequency bias,” Opt. Eng. 31, 1830–1834 (1992). [CrossRef]
  44. K. Patorski, A. Styk, and Z. Sienicki, “Time-average interference microscopy for vibration testing of silicon microelements,” Proc. SPIE 6158, 615806 (2006). [CrossRef]
  45. K. Patorski, D. Post, R. Czarnek, and Y. Guo, “Real-time optical differentiation for moire interferometry,” Appl. Opt. 26, 1977–1982 (1987). [CrossRef] [PubMed]
  46. M. Nisida and H. Saito, “A new interferometric method of two-dimensional stress analysis,” Exp. Mech. 4, 366–376 (1964). [CrossRef]
  47. R. J. Sanford and A. J. Durelli, “Interpretation of fringes in stress-holo-interferometry,” Exp. Mech. 11, 161–166 (1971). [CrossRef]
  48. B. Chatelain, “Holographic photo-elasticity: independent observation of the isochromatic and isopachic fringes for a single model subjected to only one process,” Opt. Laser Technol. 5, 201–204 (1973). [CrossRef]
  49. YAWTb: Yet Another Wavelet Toolbox, http://rhea.tele.ucl.ac.be/yawtb/ (accessed 4 March 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited