OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 20 — Jul. 10, 2010
  • pp: 3841–3845

Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis

Hyun-Min Kim, Tae-Hun Kim, Bongkyun Kim, and Youngjoo Chung  »View Author Affiliations

Applied Optics, Vol. 49, Issue 20, pp. 3841-3845 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a transverse load sensor with enhanced sensitivity through the use of a birefringent interferometer based on a highly birefringent photonic crystal fiber (HB-PCF). The transverse load sensitivity can be enhanced by using a fabricated HB-PCF having larger air holes on its fast axis. The transverse load sensitivity was measured to be high: 2.17 nm / ( N / cm ) . The temperature-induced undesirable effects can be ignored because transmission outputs of our HB-PCF were stable with the change of the temperature. The sensing probe can be compact because of its high birefringence with the order of 10 3 and no bending loss.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 16, 2010
Revised Manuscript: June 1, 2010
Manuscript Accepted: June 9, 2010
Published: July 1, 2010

Hyun-Min Kim, Tae-Hun Kim, Bongkyun Kim, and Youngjoo Chung, "Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis," Appl. Opt. 49, 3841-3845 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004). [CrossRef]
  2. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008). [CrossRef] [PubMed]
  3. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007). [CrossRef]
  4. Y. G. Han, Y. Chung, S. B. Lee, C. S. Kim, M. Y. Jeong, and M. K. Kim, “Temperature and strain discrimination based on a temperature-insensitive birefringent interferometer incorporating an erbium-doped fiber,” Appl. Opt. 48, 2303–2307 (2009). [CrossRef] [PubMed]
  5. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331(2005). [CrossRef]
  6. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21, 6–8 (2009). [CrossRef]
  7. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31, 2260–2262 (2006). [CrossRef] [PubMed]
  8. M. Silva-López, W. MacPherson, C. Li, A. Moore, J. Barton, J. Jones, D. Zhao, L. Zhang, and I. Bennion, “Transverse load and orientation measurement with multicore fiber Bragg gratings,” Appl. Opt. 44, 6890–6897 (2005). [CrossRef] [PubMed]
  9. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of π-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091–1093 (1999). [CrossRef]
  10. I. Abe, O. Frazão, M. W. Schiller, R. N. Nogueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006). [CrossRef]
  11. Y. Wang, D. N. Wang, W. Jin, and Y. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007). [CrossRef] [PubMed]
  12. Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Fibre-optic sensing applications of a pair of long-period fibre gratings,” Meas. Sci. Technol. 12, 778–781(2001). [CrossRef]
  13. O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47, 4841–4848 (2008). [CrossRef] [PubMed]
  14. D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y. G. Han, W. T. Han, and Y. Chung, “The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber,” Opt. Express 15, 7962–7967 (2007). [CrossRef] [PubMed]
  15. T. Martynkien, M. Szpulak, and W. Urbanczyk, “Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers,” Appl. Opt. 44, 7780–7788(2005). [CrossRef] [PubMed]
  16. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited