OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 20 — Jul. 10, 2010
  • pp: 3900–3904

Polarization-independent tunable optical filters using bilayer polarization gratings

Elena Nicolescu and Michael J. Escuti  »View Author Affiliations

Applied Optics, Vol. 49, Issue 20, pp. 3900-3904 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a polarization-independent tunable optical filter based on switchable polarization gratings (PGs) formed using reactive and nonreactive liquid crystals (LCs). PGs are anisotropic diffraction gratings that exhibit unique properties, including a zero-order transmittance that is independent of incident polarization and that can vary from 0 % to 100 % , depending on wavelength and applied voltage. A stack of several PGs of varying thicknesses combined with an elemental angle filter yields polarization-independent bandpass tuning with minimal loss. We introduce a novel hybrid PG consisting of both reactive and nonreactive LC layers, which allows very thick gratings to be created with thin active LC layers. We demonstrate a tunable optical filter with a peak transmittance of 84% of unpolarized light, a minimum full width at half-maximum of 64 nm , and a maximum tuning range of 140 nm .

© 2010 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.0250) Optical devices : Optoelectronics
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 28, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 11, 2010
Published: July 6, 2010

Elena Nicolescu and Michael J. Escuti, "Polarization-independent tunable optical filters using bilayer polarization gratings," Appl. Opt. 49, 3900-3904 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Woltman, G. Jay, and G. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007). [CrossRef] [PubMed]
  2. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000). [CrossRef]
  3. G. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol. 5, 3–39 (1999). [CrossRef]
  4. C. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–16 (2004). [CrossRef]
  5. K. Rosfjord, R. Villalaz, and T. Gaylord, “Constant-bandwidth scanning of the Czerny–Turner monochromator,” Appl. Opt. 39, 568–572 (2000). [CrossRef]
  6. A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315. [CrossRef]
  7. A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004). [CrossRef]
  8. K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993). [CrossRef]
  9. H. Xianyu, S. Faris, and G. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43, 5006–5015 (2004). [CrossRef] [PubMed]
  10. J. McMurdy, G. Crawford, and G. Jay, “Ferroelectric liquid crystal based tunable microspectrometer,” Mol. Cryst. Liq. Cryst. 476, 61–76 (2007). [CrossRef]
  11. O. Aharon and I. Abdulhalim, “Tunable optical filter having a large dynamic range,” Opt. Lett. 34, 2114–2116 (2009). [CrossRef] [PubMed]
  12. H. Morris, C. Hoyt, P. Miller, and P. Treado, “Liquid crystal tunable filter Raman chemical imaging,” Appl. Spectrosc. 50, 805–811 (1996). [CrossRef]
  13. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984). [CrossRef]
  14. C. Oh and M. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007). [CrossRef]
  15. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006). [CrossRef]
  16. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009). [CrossRef]
  17. M. Escuti and W. Jones, “Polarization-independent switching with high contrast from a liquid crystal polarization grating,” SID Symposium Digest 37, 1443–1446 (2006). [CrossRef]
  18. J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004). [CrossRef]
  19. M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006). [CrossRef]
  20. E. Nicolescu and M. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007). [CrossRef]
  21. R. Komanduri and M. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007). [CrossRef]
  22. I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000). [CrossRef]
  23. R. Komanduri and M. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106(2009). [CrossRef]
  24. M. Escuti, D. Cairns, and G. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390(2004). [CrossRef]
  25. C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited