OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4335–4342

Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom

Kentaro Somiya and Osamu Miyakawa  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4335-4342 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Precise measurements, such as those made with interferometric gravitational-wave detectors, require the measurement device to be properly controlled so that the sensitivity can be as high as possible. Mirrors in the interferometer are to be located at specific operation points to isolate laser noise and to accumulate the signal in resonant cavities. On the other hand, rigid control of an auxiliary degree of freedom may result in imposing sensing noise of the control on the target object as excess force noise. Evaluation of this so-called loop noise is important in order to design a decent control scheme of the measurement device. In this paper, we show the method to calculate the level of loop noise, which has been recently implemented in simulation tools that are broadly used for designing gravitational-wave detectors.

© 2010 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:

Original Manuscript: January 8, 2010
Revised Manuscript: June 18, 2010
Manuscript Accepted: July 7, 2010
Published: August 4, 2010

Kentaro Somiya and Osamu Miyakawa, "Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom," Appl. Opt. 49, 4335-4342 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Abramovici, W. Althouse, R. Drever, Y. Gürsel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  2. C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. Man, P. Manh, A. Marraud, D. Shoemaker, J. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. Aguirregabiria, H. Bel, J. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. Marck, Y. Gourghoulon, L. Holloway, F. Fuligni, V. Iafolla, and G. Natale, “The VIRGO Project: a wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990). [CrossRef]
  3. H. Lück and the GEO600 Team, “The GEO600 project,” Class. Quantum Grav. 14, 1471–1476 (1997). [CrossRef]
  4. M. Ando and TAMA Collaboration, “Stable operation of a 300 m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy,” Phys. Rev. Lett. 86, 3950–3954 (2001). [CrossRef] [PubMed]
  5. K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191(2005). [CrossRef] [PubMed]
  6. J. Mason and P. Willems, “Signal extraction and optical design for an advanced gravitational-wave interferometer,” Appl. Opt. 42, 1269–1282 (2003). [CrossRef] [PubMed]
  7. S. Sato, S. Kawamura, K. Kokeyama, F. Kawazoe, and K. Somiya, “Diagonalization of the length sensing matrix of a dual recycled laser interferometer gravitational wave antenna,” Phys. Rev. D 75, 082004 (2007). [CrossRef]
  8. K. Somiya, “Investigation of radiation pressure effect in a frequency-detuned interferometer and development of the readout scheme for a gravitational-wave detector,” Ph.D. dissertation (University of Tokyo, 2004); Sec. 3.9.
  9. It has been reported that ℓm contains more information of gravitational-wave signals at low frequencies in some configurations; see Ref. 10.
  10. H. Rehbein, H. Müller-Ebhardt, K. Somiya, C. Li, R. Schnabel, K. Danzmann, and Y. Chen, “Local readout enhancement for detuned signal-recycling interferometers,” Phys. Rev. D 76, 062002 (2007). [CrossRef]
  11. A. Freise, “FINESSE,” http://www.gwoptics.org/finesse/.
  12. M. Evans, “Optickle,” http://ilog.ligo-wa.caltech.edu:7285/advligo.
  13. K. Somiya, “Length sensing and control of AdLIGO,” presented at the LSC meeting, Baton Rouge, LIGO-G060481-00-Z (14–17 August 2006).
  14. O. Miyakawa, “Calculation of loop noise for Advanced LIGO using Optickle engine,” internal report (2006), http://lhocds.ligo-wa.caltech.edu:8000/advligo/Loopnoise results.
  15. S. Ballmer, “Interferometer sensing and control,” presented at the LSC meeting, Hannover, LIGO-G070687-00-I (22–25 October 2007).
  16. http://gw.icrr.u-tokyo.ac.jp/JGWwiki/LCGT.
  17. DC readout is a way to obtain the signal by adding an offset on the arm-cavity control and using the carrier light that leaks through the dark port as a reference; see Refs.
  18. K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006). [CrossRef]
  19. R. Ward, R. Adhikari, B. Abbott, R. Abbott, D. Barron, R. Bork, T. Fricke, V. Frolov, J. Heefner, A. Ivanov, O. Miyakawa, K. McKenzie, B. Slagmolen, M. Smith, R. Taylor, S. Vass, S. Waldman, and A. Weinstein, “dc readout experiment at the Caltech 40 m prototype interferometer,” Class. Quantum Grav. 25, 114030 (2008). [CrossRef]
  20. S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Lück, M. Prijatelj, K. Strain, J. Smith, and B. Willke, “DC-readout of a signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012 (2009). [CrossRef]
  21. K. Somiya, O. Miyakawa, P. Fritschel, and R. Adhikari, “Length sensing and control for AdLIGO,” Tech. Rep. LIGO-T060272-00-I (2006), https://dcc.ligo.org/
  22. The Virgo Collaboration, “Advanced Virgo baseline design,” VIR-027A-09 (2009), https://pub3.ego-gw.it/itf/tds/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited