OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4404–4412

Software configurable optical test system: a computerized reverse Hartmann test

Peng Su, Robert E. Parks, Lirong Wang, Roger P. Angel, and James H. Burge  »View Author Affiliations


Applied Optics, Vol. 49, Issue 23, pp. 4404-4412 (2010)
http://dx.doi.org/10.1364/AO.49.004404


View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A software configurable optical test system (SCOTS) based on the geometry of the fringe reflection or phase measuring deflectometry method was developed for rapidly, robustly, and accurately measuring large, highly aspherical shapes such as solar collectors and primary mirrors for astronomical telescopes. In addition to using phase shifting methods for data collection and reduction, we explore the test from the point view of performing traditional optical testing methods, such as Hartmann or Hartmann–Shack tests, in a reverse way. Using this concept, the slope data calculation and unwrapping in the test can also be done with centroiding and line-scanning methods. These concepts expand the test to work in more general situations where fringe illumination is not practical. Experimental results show that the test can be implemented without complex calibration for many applications by taking the geometric advantage of working near the center curvature of the test part. The results also show that the test has a large dynamic range, can achieve measurement accuracy comparable with interferometric methods, and can provide a good complement to interferometric tests in certain circumstances. A variation of this method is also useful for measuring refractive optics and optical systems. As such, SCOTS provides optical manufacturers with a new tool for performing quantitative full field system evaluation.

© 2010 Optical Society of America

OCIS Codes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(150.3045) Machine vision : Industrial optical metrology
(080.4228) Geometric optics : Nonspherical mirror surfaces

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 11, 2010
Revised Manuscript: July 10, 2010
Manuscript Accepted: July 14, 2010
Published: August 5, 2010

Citation
Peng Su, Robert E. Parks, Lirong Wang, Roger P. Angel, and James H. Burge, "Software configurable optical test system: a computerized reverse Hartmann test," Appl. Opt. 49, 4404-4412 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-23-4404

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Supplementary Material


» Media 1: AVI (1682 KB)     

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited