OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4434–4440

Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication

Hideo Takino, Kazuya Yamamura, Yasuhisa Sano, and Yuzo Mori  »View Author Affiliations


Applied Optics, Vol. 49, Issue 23, pp. 4434-4440 (2010)
http://dx.doi.org/10.1364/AO.49.004434


View Full Text Article

Enhanced HTML    Acrobat PDF (655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasma chemical vaporization machining (CVM) is a high-precision chemical shaping method using rf plasma generated in the proximity of an electrode in an atmospheric environment. The purpose of the present study is to clarify the removal characteristics of plasma CVM using a pipe electrode. Polished fused silica plates were processed by plasma CVM, polishing, and precision grinding under various conditions. The removal rate of plasma CVM was about 4 to 1100 times faster than that of polishing, and the maximum removal rate was almost equal to that of precision grinding. The roughness of the resultant surfaces was almost the same as that of the polished surfaces.

© 2010 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.1250) Optical design and fabrication : Aspherics
(220.4610) Optical design and fabrication : Optical fabrication
(240.6700) Optics at surfaces : Surfaces
(350.4600) Other areas of optics : Optical engineering
(350.5400) Other areas of optics : Plasmas

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: April 6, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: July 12, 2010
Published: August 6, 2010

Citation
Hideo Takino, Kazuya Yamamura, Yasuhisa Sano, and Yuzo Mori, "Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication," Appl. Opt. 49, 4434-4440 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-23-4434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617 (1989). [CrossRef]
  2. D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990). [CrossRef]
  3. H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992). [CrossRef]
  4. G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.
  5. A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001). [CrossRef]
  6. T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003). [CrossRef]
  7. T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004). [CrossRef]
  8. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006). [CrossRef]
  9. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006). [CrossRef]
  10. Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.
  11. Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000). [CrossRef]
  12. Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626(2000). [CrossRef]
  13. K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006). [CrossRef]
  14. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998). [CrossRef]
  15. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002). [CrossRef] [PubMed]
  16. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006). [CrossRef] [PubMed]
  17. D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited