OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 24 — Aug. 20, 2010
  • pp: 4604–4609

Analytical modeling of the gas-filling dynamics in photonic crystal fibers

Isabelle Dicaire, Jean-Charles Beugnot, and Luc Thévenaz  »View Author Affiliations

Applied Optics, Vol. 49, Issue 24, pp. 4604-4609 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present useful expressions predicting the filling time of gaseous species inside photonic crystal fibers. Based on the theory of diffusion, this gas-filling model can be applied to any given fiber geometry or length by calculating diffusion coefficients. This was experimentally validated by monitoring the filling process of acetylene gas in several fiber samples of various geometries and lengths. The measured filling times agree well, within ± 15 % , with the predicted values for all fiber samples. In addition, the pressure dependence of the diffusion coefficient was experimentally verified by filling a given fiber sample with acetylene gas at various pressures. Finally, optimized conditions for gas–light interaction are determined by considering the gas flow dynamics in the design of microstructured fibers for gas detection and all-fiber gas cell applications.

© 2010 Optical Society of America

OCIS Codes
(290.1990) Scattering : Diffusion
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 14, 2010
Manuscript Accepted: July 12, 2010
Published: August 17, 2010

Isabelle Dicaire, Jean-Charles Beugnot, and Luc Thévenaz, "Analytical modeling of the gas-filling dynamics in photonic crystal fibers," Appl. Opt. 49, 4604-4609 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004). [CrossRef]
  2. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14, 13056–13066 (2006). [CrossRef] [PubMed]
  3. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17, 16238–16243 (2009). [CrossRef] [PubMed]
  4. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16, 16423–16430 (2008). [CrossRef] [PubMed]
  5. S.-G. Li, S.-Y. Liu, Z.-Y. Song, Y. Han, T.-L. Cheng, G.-Y. Zhou, and L.-T. Hou, “Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers,” Appl. Opt. 46, 5183–5188 (2007). [CrossRef] [PubMed]
  6. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007). [CrossRef]
  7. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008). [CrossRef]
  8. F. Couny and F. Benabid, “Optical frequency comb generation in gas-filled hollow core photonic crystal fibres,” J. Opt. A Pure Appl. Opt. 11, 103002 (2009). [CrossRef]
  9. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003). [CrossRef] [PubMed]
  10. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004). [CrossRef] [PubMed]
  11. N. Gayraud, Ł. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269–1277 (2008). [PubMed]
  12. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797(2008). [CrossRef] [PubMed]
  13. S. Dushman and J. M. Lafferty, Scientific Foundations of Vacuum Technique (Wiley, 1962).
  14. R. Cunningham and R. Williams, Diffusion in Gases and Porous Media (Plenum, 1980).
  15. W. Jost, Diffusion in Solids, Liquids, Gases (Academic, 1970).
  16. C. L. Yaws, Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases (Gulf, 1995).
  17. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005). [CrossRef] [PubMed]
  18. S. Chin, I. Dicaire, J.-C. Beugnot, S. Foaleng-Mafang, M. Gonzalez-Herraez, and L. Thévenaz, “Material slow light does not enhance Beer-Lambert absorption,” in Slow and Fast Light (Optical Society of America, 2009), paper SMA3.
  19. P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Opt. Lett. 31, 2538–2540(2006). [CrossRef] [PubMed]
  20. J. O’Hanlon, A User’s Guide to Vacuum Technology(Wiley, 2003). [CrossRef]
  21. K. S. Bond, N. D. Collett, E. P. Fuller, J. L. Hardwick, E. E. Hinds, T. W. Keiber, I. S. G. Kelly-Morgan, C. M. Matthys, M. J. Pilkenton, K. W. Sinclair, and A. A. Taylor, “Temperature dependence of pressure broadening and shifts of acetylene at 1550nm by He, Ne, and Ar,” Appl. Phys. B 90, 255–262 (2008). [CrossRef]
  22. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited