OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4735–4745

Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points

Satoshi Tomioka, Samia Heshmat, Naoki Miyamoto, and Shusuke Nishiyama  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. 4735-4745 (2010)
http://dx.doi.org/10.1364/AO.49.004735


View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the process of phase unwrapping for an image obtained by an interferometer or in-line holography, noisy image data may pose difficulties. Traditional phase unwrapping algorithms used to estimate a two-dimensional phase distribution include much estimation error, due to the effect of singular points. This paper introduces an accurate phase-unwrapping algorithm based on three techniques: a rotational compensator, unconstrained singular point positioning, and virtual singular points. The new algorithm can confine the effect of singularities to the local region around each singular point. The phase- unwrapped result demonstrates that accuracy is improved, compared with past methods based on the least-squares approach.

© 2010 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(090.2880) Holography : Holographic interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(100.3175) Image processing : Interferometric imaging
(110.5086) Imaging systems : Phase unwrapping
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: March 17, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: July 23, 2010
Published: August 26, 2010

Citation
Satoshi Tomioka, Samia Heshmat, Naoki Miyamoto, and Shusuke Nishiyama, "Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points," Appl. Opt. 49, 4735-4745 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-4735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  2. K. E. Perry, Jr., and J. McKelvie, “A comparison of phase shifting and Fourier methods in the analysis of discontinuous fringe patterns,” Opt. Lasers Eng. 19, 269–284 (1993). [CrossRef]
  3. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  4. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  5. B. Breuckmann and W. Thieme, “Computer-aided analysis of holographic interferograms using the phase-shift method,” Appl. Opt. 24, 2145–2149 (1985). [CrossRef] [PubMed]
  6. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  7. R. Vandenhouten and R. Grebe, “Phase reconstruction and unwrapping from holographic interferograms of partially absorbent phase objects,” Appl. Opt. 34, 1401–1406 (1995). [CrossRef] [PubMed]
  8. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988). [CrossRef]
  9. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268–3270 (1989). [CrossRef] [PubMed]
  10. J. R. Buckland, J. M. Huntley, and S. R. E. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34, 5100–5108 (1995). [CrossRef] [PubMed]
  11. R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995). [CrossRef] [PubMed]
  12. M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Remote Sensing 36, 813–821 (1998). [CrossRef]
  13. B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing,” Appl. Opt. 38, 5577–5593 (1999). [CrossRef]
  14. S. A. Karout, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Two-dimensional phase unwrapping using a hybrid genetic algorithm,” Appl. Opt. 46, 730–743 (2007). [CrossRef] [PubMed]
  15. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977). [CrossRef]
  16. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977). [CrossRef]
  17. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979). [CrossRef]
  18. D. C. Ghiglia and L. A. Romero, “Direct phase estimation from phase differences using fast elliptic partial differential equation solvers,” Opt. Lett. 14, 1107–1109 (1989). [CrossRef] [PubMed]
  19. H. Takajo and T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416–425 (1988). [CrossRef]
  20. H. Takajo and T. Takahashi, “Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 1818–1827 (1988). [CrossRef]
  21. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [CrossRef]
  22. D. J. Bone, H.-A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25, 1653–1660 (1986). [CrossRef] [PubMed]
  23. R. Yamaki and A. Hirose, “Singularity-spreading phase unwrapping,” IEEE Trans. Geosci. Remote Sensing 45, 3240–3251 (2007). [CrossRef]
  24. D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627–3632 (1991). [CrossRef] [PubMed]
  25. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), pp. 52–54.
  26. S. Tomioka, S. Nisiyama, and T. Enoto, “Nonlinear least square regression by adaptive domain method with multiple genetic algorithms,” IEEE Trans. Evol. Comput. 11, 1–16(2007). [CrossRef]
  27. J. A. Quiroga, A. González-Cano, and E. Bernabeu, “Stable-marriages algorithm for preprocessing phase maps with discontinuity sources,” Appl. Opt. 34, 5029–5038(1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited