OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4756–4762

Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units

Yuuki Watanabe, Seiya Maeno, Kenji Aoshima, Haruyuki Hasegawa, and Hitoshi Koseki  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. 4756-4762 (2010)
http://dx.doi.org/10.1364/AO.49.004756


View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The real-time display of full-range, 2048   axial pixel × 1024   lateral pixel , Fourier-domain optical- coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73 ms , and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75 ms , for a total time shorter than the 36.70 ms frame-interval time using a line-scan CCD camera operated at 27.9 kHz . That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

© 2010 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Processing

History
Original Manuscript: April 13, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: July 25, 2010
Published: August 26, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Yuuki Watanabe, Seiya Maeno, Kenji Aoshima, Haruyuki Hasegawa, and Hitoshi Koseki, "Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units," Appl. Opt. 49, 4756-4762 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-4756


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  3. G. Häusler and M. W. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003). [CrossRef] [PubMed]
  5. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004). [CrossRef] [PubMed]
  6. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef] [PubMed]
  7. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006). [CrossRef] [PubMed]
  8. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008). [CrossRef] [PubMed]
  9. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  10. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. Bouma, and G. Tearney, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004). [CrossRef] [PubMed]
  11. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005). [CrossRef] [PubMed]
  12. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006). [CrossRef] [PubMed]
  13. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007). [CrossRef]
  14. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007). [CrossRef] [PubMed]
  15. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C.Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007). [CrossRef] [PubMed]
  16. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425(2007). [CrossRef] [PubMed]
  17. S. Vergnole, G. Lamouche, and M. L. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732–734 (2008). [CrossRef] [PubMed]
  18. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008). [CrossRef] [PubMed]
  19. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16, 12350–12361 (2008). [CrossRef] [PubMed]
  20. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009). [CrossRef] [PubMed]
  21. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three-dimensional optical angiography,” Opt. Express 15, 4083–4097 (2007). [CrossRef] [PubMed]
  22. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452(2008). [CrossRef] [PubMed]
  23. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48, 6365–6370 (2009). [CrossRef] [PubMed]
  24. S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J Biomed. Opt. 9, 454–463 (2004). [CrossRef] [PubMed]
  25. J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008). [CrossRef] [PubMed]
  26. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008). [CrossRef] [PubMed]
  27. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14, 587–592 (2006). [CrossRef] [PubMed]
  28. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14, 7636–7641 (2006). [CrossRef] [PubMed]
  29. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781(2008). [CrossRef] [PubMed]
  30. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J Biomed. Opt. 14, 060506(2009). [CrossRef]
  31. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18, 11772–11784 (2010). [CrossRef] [PubMed]
  32. S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010). [CrossRef] [PubMed]
  33. NVIDIA CUDA Zone, http://www.nvidia.com/object/cuda_home.htm.
  34. OpenMPArchitecture Review Board, “The OpenMPAPI specification for parallel programming,” http://www.openmp.org/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (5165 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited