OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4791–4800

Photonic bandgap fiber bundle spectrometer

Qu Hang, Bora Ung, Imran Syed, Ning Guo, and Maksim Skorobogatiy  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. 4791-4800 (2010)
http://dx.doi.org/10.1364/AO.49.004791


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using a photonic bandgap (PBG) fiber bundle and a monochrome CCD camera, we experimentally demonstrate an all-fiber spectrometer. A total of 100 Bragg fibers that have complementary and overlapping bandgaps are chosen to compose the fiber bundle. A monochrome CCD is then used to capture the binned image. To reconstruct the test spectrum from a single CCD image, we develop an algorithm based on pseudoinversion of the spectrometer transmission matrix. We demonstrate that the peak center wave length can always be reconstructed within several percent of its true value regardless of the peak width or position, and that, although the widths of the individual Bragg fiber bandgaps are quite large ( 60 180 nm ), the spectroscopic system has a resolution limit of 30 nm . Moreover, we conclude that, by minimizing system errors, the resolution can be further improved down to several nanometers in width. Finally, we report fabrication of PBG fiber bundles containing hundreds of fibers using a two-stage drawing technique. This method constitutes a very promising approach toward industrial-strength fabrication of all-fiber spectrometers.

© 2010 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 4, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: July 19, 2010
Published: August 27, 2010

Citation
Qu Hang, Bora Ung, Imran Syed, Ning Guo, and Maksim Skorobogatiy, "Photonic bandgap fiber bundle spectrometer," Appl. Opt. 49, 4791-4800 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-4791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Ramasamy, V. Venkatasubrmanian, and S. Anbazhagan, “Reflectance spectra of minerals and their discrimination using Thematic Mapper, IRS and SPOT multispectral data,” Int. J. Remote Sens. 14, 2935–2970 (1993). [CrossRef]
  2. G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,” Remote Sens. Environ. 24, 1–29 (1988). [CrossRef]
  3. A. Rosselet, W. Graff, U. P. Wild, and R. Gshwind, “Persistent spectral hole burning used for spectrally high-resolved imaging of the sun,” Proc. SPIE 2480, 205–212 (1995). [CrossRef]
  4. D. L. Farkas, B. T. Ballow, G. W. Fisher, W. Niu, and E. S. Wachman, “Microscopic and mesoscopic spectral bio-imaging,” Proc. SPIE 2678, 200–206 (1996). [CrossRef]
  5. M. Vilaseca, J. Pujol, and M. Arjona, “Multispectral system for reflectance reconstruction in the near-infrared region,” Appl. Opt. 45, 4241–4253 (2006). [CrossRef] [PubMed]
  6. M. Vilaseca, J. Pujol, and M. Arjona, “Spectral-reflectance reconstruction in the near-infrared region by use of conventional charge-coupled-device camera measurements,” Appl. Opt. 42, 1788–1798 (2003). [CrossRef] [PubMed]
  7. H. Suto, “Chalcogenide fiber bundle for 3D spectroscopy,” Infrared Phys. Technol. 38, 93–99 (1997). [CrossRef]
  8. B. Lienert, J. Porter, and S. K. Sharma, “Simultaneous measurement of spectra at multiple ranges using a single spectrometer,” Appl. Opt. 48, 4762–4766 (2009). [CrossRef] [PubMed]
  9. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002). [CrossRef]
  10. J. Y. Hardegerg, F. Schmitt, H. Brettel, J. Crettez, and H. Maitre, “Multispectral image acquisition and simulation of illuminant changes,” in Colour Imaging: Vision and Technology, L.W.MacDonald and M.R.Luo, eds (Wiley, 1999), pp. 145–164.
  11. M. H. Kasari, “Spectral vision system for measuring color images,” J. Opt. Soc. Am. A 16, 2352–2362 (1999). [CrossRef]
  12. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972), pp 56–60.
  13. F. Hase, T. Blumenstock, and C. Paton-Walsh, “Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software,” Appl. Opt. 38, 3417–3422 (1999). [CrossRef]
  14. C. Bernardo and D. W. T. Griffith, “Fourier transform spectrometer instrumental lineshape (ILS) retrieval by Fourier deconvolution,” J. Quant. Spectrosc. Radiat. Transfer 95, 141–150 (2005). [CrossRef]
  15. M. Skorobogatiy and N. Guo, “Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers,” Opt. Lett. 32, 900–902 (2007). [CrossRef] [PubMed]
  16. A. Dupuis, N. Guo, B. Gauvreau, A. Hassani, E. Pone, F. Boismenu, and M. Skorobogatiy, “Guiding in the visible with “colorful” solid-core Bragg fibers,” Opt. Lett. 32, 2882–2884 (2007). [CrossRef] [PubMed]
  17. B. Gauvreau, N. Guo, K. Schicker, K. Stoeffler, F. Boismenu, A. Ajji, R. Wingfield, C. Dubois, and M. Skorobogatiy, “Color-changing and color-tunable photonic bandgap fiber textiles,” Opt. Express 16, 15677–15693 (2008). [CrossRef] [PubMed]
  18. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Solljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fiber,” Opt. Express 9, 748–779(2001). [CrossRef] [PubMed]
  19. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  20. Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling technique for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21, 2246–2254(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited