OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4808–4813

Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes

Fang Long, Huiping Tian, and Yuefeng Ji  »View Author Affiliations

Applied Optics, Vol. 49, Issue 25, pp. 4808-4813 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c / 41 to c / 256 , by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262   bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4 ps .

© 2010 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystal Waveguides

Original Manuscript: February 16, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: July 23, 2010
Published: August 30, 2010

Fang Long, Huiping Tian, and Yuefeng Ji, "Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes," Appl. Opt. 49, 4808-4813 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Rawal, R. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325(2009). [CrossRef] [PubMed]
  2. T. F. Krauss, “Why do we need slow light?,” Nat. Photon. 2, 448–450 (2008). [CrossRef]
  3. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008). [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2001).
  5. A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008). [CrossRef]
  6. M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008). [CrossRef]
  7. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  8. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450(2006). [CrossRef] [PubMed]
  9. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef] [PubMed]
  10. M. Jing and J. Chun, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett. 20, 1375 (2008). [CrossRef]
  11. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009). [CrossRef] [PubMed]
  12. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef] [PubMed]
  13. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008). [CrossRef]
  14. L. Jiguang and Z. R. Huang, “Low loss photonic crystal waveguide by elliptical unit cell structure,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2006), pp. 827–828.
  15. S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175 (2003). [CrossRef] [PubMed]
  16. A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006). [CrossRef]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef] [PubMed]
  18. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  19. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  20. G. P. Agrawal, Fiber-Optic Communication Systems(Wiley, 2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited