OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: F47–F58

Dynamic holography using pixelated light modulators

Susanne Zwick, Tobias Haist, Michael Warber, and Wolfgang Osten  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. F47-F58 (2010)
http://dx.doi.org/10.1364/AO.49.000F47


View Full Text Article

Enhanced HTML    Acrobat PDF (705 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dynamic holography using spatial light modulators is a very flexible technique that offers various new applications compared to static holography. We give an overview on the technical background of dynamic holography focusing on pixelated spatial light modulators and their technical restrictions, and we present a selection of the numerous applications of dynamic holography.

© 2010 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(090.1970) Holography : Diffractive optics
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
LASERS: THE FIRST FIFTY YEARS (INVITED ONLY)

History
Original Manuscript: December 15, 2009
Manuscript Accepted: May 25, 2010
Published: July 1, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Susanne Zwick, Tobias Haist, Michael Warber, and Wolfgang Osten, "Dynamic holography using pixelated light modulators," Appl. Opt. 49, F47-F58 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-F47


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
  2. W. Osten, “Holography in new shoes: a digital-analogue interface,” in Proceedings of IEEE, LEOS Annual Meeting (IEEE, 2006), pp. 72–73.
  3. C. Maurer, A. Schwaighofer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Suppression of undesired diffraction orders of binary phase holograms,” Appl. Opt. 47, 3994–3998 (2008). [CrossRef]
  4. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962). [CrossRef]
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  6. J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004).
  7. J. Liesener and W. Osten, “Wavefront optimization using piston micro mirror arrays,” in Proceedings of Fringe 05, W.Osten, ed. (Springer, 2005), pp. 150–157.
  8. D. Monk and R. Gale, “The digital micromirror device for projection display,” Microelectron. Eng. 27, 489–493 (1995). [CrossRef]
  9. E. Lueder, Liquid Crystal Displays (Wiley, 2001).
  10. A. Georgiou, M. Komarcevic, T. Wilkinson, and W. Crossland, “Hologram optimization using liquid crystal modelling molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 434, 183–198 (2005). [CrossRef]
  11. C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002). [CrossRef]
  12. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479–4486 (2008). [CrossRef]
  13. H. Hamam and J. de la Tocnaye, “Diffraction efficiency of quantized programmable phase elements: a critical assessment,” Pure Appl. Opt. 5, 389–403 (1996). [CrossRef]
  14. H. Schmitzer, S. Klein, and W. Dultz, “Nonlinearity of Pancharatnam’s topological phase,” Phys. Rev. Lett. 71, 1530–1533 (1993). [CrossRef]
  15. P. Hariharan, H. Ramachandran, K. A. Suresh, and J. Samuel, “The Pancharatnam phase as a strictly geometric phase: a demonstration using pure projections,” J. Mod. Opt. 44, 707–713 (1997). [CrossRef]
  16. V. Durán, J. Lancis, E. Tajahuerce, and V. Climent, “Poincaré sphere method for optimizing the phase modulation response of a twisted nematic liquid crystal display,” J. Display Technol. 3, 9–14 (2007).
  17. C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48, 044002 (2009).
  18. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18, 1567–1569 (1993). [CrossRef]
  19. V. Durán, J. Lancis, E. Tajahuerce, and M. Fernández-Alonso, “Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states,” Opt. Express 14, 5607–5616 (2006). [CrossRef]
  20. X. Zhu, Q. Hong, Y. Huang, and S. Wu, “Eigenmodes of a reflective twisted-nematic liquid-crystal cell,” J. Appl. Phys. 94, 2868–2873 (2003). [CrossRef]
  21. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004). [CrossRef]
  22. U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model,” J. Opt. Soc. Am. A 21, 1996–2008 (2004). [CrossRef]
  23. A. Márquez, C. Iemmi, I. Moreno, J. Campos, and M. Yzuel, “Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. optimization of the modulation diffraction efficiency,” Opt. Express 13, 2111–2119(2005). [CrossRef]
  24. A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display,” Appl. Opt. 47, 4267–4274 (2008). [CrossRef]
  25. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008). [CrossRef]
  26. M. Persson, D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Computer generated holograms designed to reduce intensity fluctuations during SLM update,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC3.
  27. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278–6284 (2004). [CrossRef]
  28. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, “Symmetry dependence of holograms for optical trapping,” Opt. Lett. 30, 2086–2088 (2005). [CrossRef]
  29. D. Palima and V. R. Daria, “Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms,” Appl. Opt. 45, 6689–6693 (2006). [CrossRef]
  30. T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators –versatile tools for holography,” J. Hologr. Speckle 3, 125–136 (2006).
  31. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48, 5834–5841 (2009). [CrossRef]
  32. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004). [CrossRef]
  33. S.-H. Lee and D. G. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13, 7458–7465 (2005). [CrossRef]
  34. M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005). [CrossRef]
  35. A. Lackner, J. Margerum, and C. V. Ast, “Near ultraviolet photostability of liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. 141, 289–310 (1986). [CrossRef]
  36. J. Lu, S. V. Deshpande, E. Gulari, J. Kanicki, and W. L. Warren, “Ultraviolet light induced changes in polyimide liquid-crystal alignment films,” J. Appl. Phys. 80, 5028–5034(1996). [CrossRef]
  37. J. Grimmett, “Thermal analysis of a light reflecting digital micromirror device,” in Proceedings of IEEE, International Systems Packaging Symposium (IEEE, 1997) pp. 242–247.
  38. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
  39. M. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in Proceedings of IEEE, Reliability Physics Symposium (IEEE, 1998) pp. 9–16.
  40. J. Zhang, Y. C. Lee, A. Tuantranont, and V. M. Bright, “Thermal analysis of micromirrors for high-energy applications,” in Proceedings of IEEE, Transactions on Advanced Packaging (IEEE, 2004), pp. 310–317.
  41. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A: Pure Appl. Opt. 10, 035302 (2008).
  42. M. Seldowitz, J. Allebach, and D. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987). [CrossRef]
  43. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).
  44. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988). [CrossRef]
  45. J. Fienup, “Iterative method applied to image reconstruction and to computer–generated holograms,” Opt. Eng. 19, 297–305 (1980).
  46. B. K. Jennison and J. P. Allebach, “Analysis of the leakage from computer-generated holograms synthesized by direct binary search,” J. Opt. Soc. Am. A 6, 234–243 (1989). [CrossRef]
  47. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Efficient design of direct-binary-search computer-generated holograms,” J. Opt. Soc. Am. A 8, 652–660 (1991). [CrossRef]
  48. T. Dresel, M. Beyerlein, and J. Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption,” Appl. Opt. 35, 6865–6874 (1996). [CrossRef]
  49. F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3864–3870 (1989). [CrossRef]
  50. T. Haist, M. Schönleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140, 299–308(1997). [CrossRef]
  51. G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 117 (2005). [CrossRef]
  52. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12, 1665–1670 (2004). [CrossRef]
  53. J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48, 020502(2009).
  54. D. Engstroem, A. Frank, J. Backsten, M. Goksoer, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17, 9989–10000 (2009). [CrossRef]
  55. J.-Y. Zhuang and O. K. Ersoy, “Fast decimation-in-frequency direct binary search algorithms for synthesis of computer-generated holograms,” J. Opt. Soc. Am. A 11, 135–143 (1994). [CrossRef]
  56. V. Boutenko and R. Chevallier, “Second order direct binary search algorithm for the synthesis of computer-generated holograms,” Opt. Commun. 125, 43–47 (1996). [CrossRef]
  57. G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90, 161–175 (1990). [CrossRef]
  58. S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef]
  59. M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150–164(1996). [CrossRef]
  60. L. Ingber, “Very fast simulated re-annealing,” Math. Comput. Model. 12, 967–973 (1989). [CrossRef]
  61. D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617–4624 (2006). [CrossRef]
  62. A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing,” J. Mod. Opt. 39, 2531–2539 (1992). [CrossRef]
  63. M. Pahlke, “Auslegung hocheffizienter, computergenerierter Beugungsstrukturen zur Strahlformung,” Ph. D. thesis (University of Stuttgart, 2000), ISBN 3-923560-39-7.
  64. C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853–14861 (2008). [CrossRef]
  65. T. Peter, F. Wyrowski, and O. Bryngdahl, “Importance of the initial distribution for iterative calculations of quantized diffractive elements,” J. Mod. Opt. 40, 591–600 (1993). [CrossRef]
  66. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13, 1923–1932 (2005). [CrossRef]
  67. Y.-H. Seo, H.-J. Cho, and D.-W. Kim, “High-performance CGH processor for real-time digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA9.
  68. T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004). [CrossRef]
  69. N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clearspeed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009). [CrossRef]
  70. T. Haist, M. Reicherter, M. Wu, and L. Seifert, “How to use your graphics board for the computation of holograms,” Comput. Sci. Eng. 1(6), 8–14 (2006).
  71. M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, “Fast hologram computation and aberration control for holographic tweezers,” Proc. SPIE 5930, 59301Y (2005).
  72. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45, 888–896 (2006). [CrossRef]
  73. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008). [CrossRef]
  74. F. Yaras, H. Kang, and L. Onural, “Real-time multiple SLM color holographic display using multiple GPU acceleration,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWA4.
  75. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14, 2101–2107 (2006). [CrossRef]
  76. F. Belloni and S. Monneret, “Quadrant kinoform: an approach to multiplane dynamic three-dimensional holographic trapping,” Appl. Opt. 46, 4587–4593 (2007). [CrossRef]
  77. C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A: Pure Appl. Opt. 6, 271–276 (2004).
  78. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34, 3165–3171 (1995). [CrossRef]
  79. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17, 1330–1339 (2009). [CrossRef]
  80. D. O’Brien, T. Wilkinson, and R. Mears, “Programmable computer generated holograms with large space bandwidth product,” in Proceedings of IEEE, 4th International Conference on Holographic Systems, Components and Applications, (IEEE, 1993), pp. 216–221.
  81. J. P. Allebach, N. C. Gallagher, and B. Liu, “Aliasing error in digital holography,” Appl. Opt. 15, 2183–2188 (1976). [CrossRef]
  82. R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A 8, 572–578 (1991). [CrossRef]
  83. H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
  84. W. Osten, T. Baumbach, and W. Jüptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002). [CrossRef]
  85. T. Haist, W. Osten, M. Reicherter, J. Liesener, and L. Seifert, “Dynamic holography and its application in measurement systems,” Proc. SPIE 5202, 131–142 (2003).
  86. T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006). [CrossRef]
  87. C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48, 4003–4008 (2009). [CrossRef]
  88. K. L. Tan, W. A. Crossland, and R. J. Mears, “Dynamic holography for optical interconnections. I. Noise floor of low-cross-talk holographic switches,” J. Opt. Soc. Am. A 18, 195–204(2001). [CrossRef]
  89. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960(2000). [CrossRef]
  90. Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, and D. Li, “Investigation of optical testing with a phase-only liquid crystal spatial light modulator,” Opt. Express 13, 1059–1065 (2005). [CrossRef]
  91. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004). [CrossRef]
  92. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).
  93. F. Yu, Optical Information Processing: Optical Signal Processing—Fourier Optics (Wiley, 1983).
  94. Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 229–230 (1996).
  95. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999). [CrossRef]
  96. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  97. J. E. Curtis, B. A. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–75 (2002). [CrossRef]
  98. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  99. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995). [CrossRef]
  100. N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996). [CrossRef]
  101. D. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett. 28, 740–742 (2003). [CrossRef]
  102. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
  103. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009). [CrossRef]
  104. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  105. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006). [CrossRef]
  106. T. Haist, E.-U. Wagemann, and H. J. Tiziani, “Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display,” J.Opt. A: Pure Appl. Opt. 1, 428–430 (1999).
  107. S. Zwick, M. Warber, T. Haist, and W. Osten, “Realization of a holographic microlaser scalpel using a digital micromirror device,” Proc. SPIE 6616, 66160N (2007).
  108. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16, 15942–15948 (2008). [CrossRef]
  109. D. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).
  110. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282(2001). [CrossRef]
  111. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
  112. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009). [CrossRef]
  113. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005). [CrossRef]
  114. C. Rembe, S. Boedecker, A. Dräbenstedt, F. Pudewills, and G. Siegmund, “Heterodyne laser-doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2GHz,” Proc. SPIE 7098, 70980A (2008).
  115. A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser Doppler interferometry as a diagnostic tool,” The Laryngoscope 111, 501–507 (2001). [CrossRef]
  116. R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003).
  117. W. Zheng, R. V. Kruzelecky, and R. Changkakoti, “Multichannel laser vibrometer and its applications,” Proc. SPIE 3411, 376–384 (1998).
  118. E. Cupido, S. Morel, and D. Smith, “Multipoint laser doppler vibrometer for transient analysis,” in Proceedings of IMAC XXI (Curran, 2003).
  119. V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006).
  120. M. J. Connelly, P. M. Szecówka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera,” Opt. Lett. 33, 330–332 (2008). [CrossRef]
  121. F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” in Proceedings of Fringe 09, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp. 529–531.
  122. U. Gopinathan, D. S. Monaghan, B. M. Hennelly, C. P. Mc Elhinney, D. P. Kelly, J. McDonald, T. J. Naughton, and J. T. Sheridan, “A projection system for real world three-dimensional objects using spatial light modulators,” J. Display Technol. 4, 254–261 (2008).
  123. T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, “Holographic reconstruction with a 20 micron pixel-pitch reflective liquid-crystal display by use of a light emitting diode refrence light,” Opt. Lett. 27, 1406–1408 (2002). [CrossRef]
  124. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express 16, 5338–5349 (2008). [CrossRef]
  125. L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003). [CrossRef]
  126. T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited