OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: F71–F78

Fiber lasers and amplifiers: an ultrafast performance evolution

Andreas Tünnermann, Thomas Schreiber, and Jens Limpert  »View Author Affiliations

Applied Optics, Vol. 49, Issue 25, pp. F71-F78 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first rare-earth-doped fiber lasers were operated in the early sixties and produced a few milliwatts at a wavelength around 1 μm. For the next several decades, fiber lasers were little more than a low-power laboratory curiosity. Recently, however, fiber lasers are entering the realm of kilowatt powers in continuous as well as in pulse operation with diffraction-limited beam quality. In this article we review this power evolution.

© 2010 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:

Original Manuscript: January 15, 2010
Manuscript Accepted: April 30, 2010
Published: July 15, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Andreas Tünnermann, Thomas Schreiber, and Jens Limpert, "Fiber lasers and amplifiers: an ultrafast performance evolution," Appl. Opt. 49, F71-F78 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Albert Einstein, “Zur Quantentheorie der Strahlung,” Phys. Z. 18, 121–128 (1917).
  2. J. P. Gordon, H. J. Zeiger, and C. H. Townes, “Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3,” Phys. Rev. 95, 282–284 (1954). [CrossRef]
  3. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958). [CrossRef]
  4. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  5. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
  6. W. B. Jones, L. M. Goldman, J. P. Chernoch, and W. S. Martin, “The Mini-FPL—a face-pumped laser: concept and implementation,” IEEE J. Quantum Electron. 8, 534–535 (1972). [CrossRef]
  7. L. Zenteno, “High power double-clad fiber lasers,” J. Lightwave Technol. 11, 1435–1446 (1993). [CrossRef]
  8. C. J. Koester, “Laser action by enhanced total internal reflection,” IEEE J. Quantum Electron. 2, 580–584 (1966). [CrossRef]
  9. E. Snitzer, “Neodymium glass laser,” in Proceedings of the Third International Conference on Solid Lasers, Paris (1963), pp. 999–1019.
  10. C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182–1186 (1964). [CrossRef]
  11. D. C. Hanna, “Confined solid-state structures (fiber and waveguides) compared to bulk gain lasers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 1995), tutorial JWA1.
  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997). [CrossRef]
  13. R. D. Maurer, “Optical waveguide light source,” U.S. patent 3,808,549 (30 March 1974).
  14. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, “Double-clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, 1988), postdeadline paper PD5.
  15. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110W fibre laser,” Electron. Lett. 35, 1158–1160 (1999). [CrossRef]
  16. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004). [CrossRef] [PubMed]
  17. IPG Photonics, D. Gapontsev, “6kW CW single mode ytterbium fiber laser in all-fiber format,” in Solid State and Diode Laser Technology Review (Directed Energy Professional Society, 2008), www.ipgphotonics.com.
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  19. P. Koplow, L. Goldberg, R. P. Moeller, and D. A. V. Kliner, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000). [CrossRef]
  20. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006). [CrossRef] [PubMed]
  21. C.-H. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
  22. L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160μm2,” Opt. Express 14, 11512–11519 (2006). [CrossRef] [PubMed]
  23. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12, 1313–1319 (2004). [CrossRef] [PubMed]
  24. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715–2720 (2006). [CrossRef] [PubMed]
  25. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89, 111119 (2006). [CrossRef]
  26. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13, 7621–7630 (2005). [CrossRef] [PubMed]
  27. J. P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003). [CrossRef] [PubMed]
  28. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11, 48–53 (2003). [CrossRef] [PubMed]
  29. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007). [CrossRef] [PubMed]
  30. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54(1998). [CrossRef]
  31. P. Rußbüldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009). [CrossRef]
  32. T. Eidam, S. Hädrich, F. Röser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tünnermann, “A 325W-average-power fiber CPA system delivering sub-400fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009). [CrossRef]
  33. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830W average output power,” Opt. Lett. 35, 94–96 (2010). [CrossRef] [PubMed]
  34. J. M. Sousa and O. G. Okhotnikov, “Multimode Er-doped fiber for single-transverse-mode amplification,” Appl. Phys. Lett. 74, 1528 (1999) . [CrossRef]
  35. J. Limpert, H. Zellmer, A. Tünnermann, T. Pertsch, and F. Lederer, “Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM),” in Advanced Solid-State Lasers, M.Fermann and L.Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), paper MB20.
  36. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25, 247–254(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited