OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4851–4858

Measurement of signal intensity depth profiles in rat brains with cardiac arrest maintaining primary temperature by wide-field optical coherence tomography

Manabu Sato, Daisuke Nomura, Takashi Tsunenari, and Izumi Nishidate  »View Author Affiliations


Applied Optics, Vol. 49, Issue 26, pp. 4851-4858 (2010)
http://dx.doi.org/10.1364/AO.49.004851


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have already reported that after an injection for euthanasia, the signal intensity of optical coherence tomography (OCT) images are 2.7 times increased before cardiac arrest (CA) using OCT and rat brains without temperature control to show the potential of OCT to monitor tissue viability in brains [ Appl. Opt. 48, 4354 (2009)]. In this paper, we similarly measured maintaining the primary temperature of rat brains. It was confirmed that when maintaining the primary temperature, the time courses of the ratios of signal intensity (RSIs) were almost the same as those without temperature control. RSIs after CA varied from 1.6 to 4.5 and depended on positions measured in tissues. These results mean that the OCT technique has clinical potential for applications to monitor or diagnose a focal degraded area, such as cerebral infarctions due to focal ischemia in brains.

© 2010 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 23, 2010
Revised Manuscript: June 14, 2010
Manuscript Accepted: July 25, 2010
Published: September 2, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Manabu Sato, Daisuke Nomura, Takashi Tsunenari, and Izumi Nishidate, "Measurement of signal intensity depth profiles in rat brains with cardiac arrest maintaining primary temperature by wide-field optical coherence tomography," Appl. Opt. 49, 4851-4858 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-26-4851

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited