OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4951–4962

Time-resolved Raman spectroscopy for in situ planetary mineralogy

Jordana Blacksberg, George R. Rossman, and Anthony Gleckler  »View Author Affiliations

Applied Optics, Vol. 49, Issue 26, pp. 4951-4962 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach.

© 2010 Optical Society of America

OCIS Codes
(300.6190) Spectroscopy : Spectrometers
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6450) Spectroscopy : Spectroscopy, Raman
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:

Original Manuscript: April 12, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: August 12, 2010
Published: September 8, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Jordana Blacksberg, George R. Rossman, and Anthony Gleckler, "Time-resolved Raman spectroscopy for in situ planetary mineralogy," Appl. Opt. 49, 4951-4962 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000). [CrossRef]
  2. D. W. Ming, R. V. Morris, and B. C. Clark, “Aqueous alteration on Mars,” in The Martian Surface: Composition, Mineralogy and Physical Properties, J.F.BellIII, ed. (Cambridge University Press, 2008). [CrossRef]
  3. L. A. Soderblom and J. F. Bell III, “Exploration of the Martian surface: 1992–2007,” in The Martian Surface: Composition, Mineralogy and Physical Properties, J.F.BellIII, ed. (Cambridge University Press, 2008). [CrossRef]
  4. S. Murchie, R. Arvidson, P. Bedini, K. Beisser, J.-P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R. T. Clancy, E. H. Darlington, D. Des Marais, R. Espiritu, D. Fort, R. Green, E. Guinness, J. Hayes, C. Hash, K. Heffernan, J. Hemmler, G. Heyler, D. Humm, J. Hutcheson, N. Izenberg, R. Lee, J. Lees, D. Lohr, E. Malaret, T. Martin, J. A. McGovern, P. McGuire, R. Morris, J. Mustard, S. Pelkey, E. Rhodes, M. Robinson, T. Roush, E. Schaefer, G. Seagrave, F. Seelos, P. Silverglate, S. Slavney, M. Smith, W.-J. Shyong, K. Strohbehn, H. Taylor, P. Thompson, B. Tossman, M. Wirzburger, and M. Wolff, “Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO),” J. Geophys. Res. [Planets] 112(E5), E05S03(2007). [CrossRef]
  5. A. S. McEwen, E. M. Eliason, J. W. Bergstrom, N. T. Bridges, C. J. Hansen, W. A. Delamere, J. A. Grant, V. C. Gulick, K. E. Herkenhoff, L. Keszthelyi, R. L. Kirk, M. T. Mellon, S. W. Squyres, N. Thomas, and C. M. Weitz, “Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE),” J. Geophys. Res. [Planets] 112(E5), E05S02 (2007). [CrossRef]
  6. P. R. Christensen, M. B. Wyatt, T. D. Glotch, A. D. Rogers, S. Anwar, R. E. Arvidson, J. L. Bandfield, D. L. Blaney, C. Budney, W. M. Calvin, A. Fallacaro, R. L. Fergason, N. Gorelick, T. G. Graff, V. E. Hamilton, A. G. Hayes, J. R. Johnson, A. T. Knudson, H. Y. McSween, G. L. Mehall, L. K. Mehall, J. E. Moersch, R. V. Morris, M. D. Smith, S. W. Squyres, S. W. Ruff, and M. J. Wolff, “Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover,” Science 306, 1733–1739 (2004). [CrossRef] [PubMed]
  7. P. R. Christensen, J. L. Bandfield, R. N. Clark, K. S. Edgett, V. E. Hamilton, T. Hoefen, H. H. Kieffer, R. O. Kuzmin, M. D. Lane, M. C. Malin, R. V. Morris, J. C. Pearl, R. Pearson, T. L. Roush, S. W. Ruff, and M. D. Smith, “Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water,” J. Geophys. Res. [Planets] 105, 9623–9642 (2000). [CrossRef]
  8. J. P. Grotzinger, R. E. Arvidson, J. F. Bell, W. Calvin, B. C. Clark, D. A. Fike, M. Golombek, R. Greeley, A. Haldemann, K. E. Herkenhoff, B. L. Jolliff, A. H. Knoll, M. Malin, S. M. McLennan, T. Parker, L. Soderblom, J. N. Sohl-Dickstein, S. W. Squyres, N. J. Tosca, and W. A. Watters, “Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars,” Earth Planet. Sci. Lett. 240, 11–72 (2005). [CrossRef]
  9. P. Mahaffy, “Sample analysis at Mars: developing analytical tools to search for a habitable environment on the red planet,” Geochem. News 141 (2009).
  10. A. Wang, B. L. Jolliff, and L. A. Haskin, “Investigating surface mineralogy, alteration processes, and biomarkers on Mars using laser Raman spectroscopy,” in Sixth International Conference on Mars, abstract no. 3270 (2003).
  11. M. C. Storrie-Lombardi, J-P. Muller, M. R. Fisk, C. Cousins, B. Sattler, A. D. Griffiths, and A. J. Coates, “Laser-induced fluorescence emission (L.I.F.E.): searching for Mars organics with a UV-enhanced PanCam,” Astrobiology 9(10), 953–964(2009). [CrossRef]
  12. A. T. Basilevsky, M. A. Ivanov, J. W. Head, M. Aittola, and J. Raitala, “Landing on Venus: past and present,” Planet. Space Sci. 55, 2097–2112 (2007). [CrossRef]
  13. M. Y. Zolotov, B. Fegley, Jr., and K. Lodders, “Hydrous silicates and water on Venus,” Icarus 130, 475–494 (1997). [CrossRef]
  14. A. J. Ball, M. E. Price, R. J. Walker, G. C. Dando, N. S. Wells, and J. C. Zarnecki, “Mars Phobos and Deimos survey (M-PADS)—A Martian Moons orbiter and Phobos lander,” Adv. Space Res. 43, 120–127 (2009). [CrossRef]
  15. E. M. Galimov, “Phobos sample return mission: scientific substantiation,” Sol. Syst. Res. 44(1), 5–14 (2010). [CrossRef]
  16. A. Wang, B. L. Jolliff, and L. A. Haskin, “Raman spectroscopy as a method for mineral identification on lunar robotic exploration missions,” J. Geophys. Res. 100(E10), 21189–21199 (1995). [CrossRef]
  17. RRUFF Project: http://rruff.info/.
  18. T. Hirschfeld and B. Chase, “FT-Raman spectroscopy: development and justification,” Appl. Spectrosc. 40 (2), 133–137(1986). [CrossRef]
  19. B. Chase, “Fourier transform Raman spectroscopy,” J. Am. Chem. Soc. 108, 7485–7488 (1986). [CrossRef]
  20. L. Burgio and R. J. H. Clark, “Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation,” Spectrochim. Acta Part A 57, 1491–1521 (2001). [CrossRef]
  21. E. B. Hanlon, R. Manoharan, T-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000). [CrossRef] [PubMed]
  22. Y. Wang and R. L. McCreery, “Evaluation of a diode laser/charge coupled device spectrometer for near-infrared Raman spectroscopy,” Anal. Chem. 61, 2647–265 (1989). [CrossRef]
  23. H. G. M. Edwards, S. E. Jorge Villar, J. Jehlicka, and T. Munshi, “FT–Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals,” Spectrochim. Acta Part A 61, 2273–2280 (2005). [CrossRef]
  24. P. Makreski and G. Jovanovski, “Minerals from Macedonia. XXII. Laser-induced fluorescence bands in the FT-Raman spectrum of almandine mineral,” J. Raman Spectrosc. 39, 1210–1213 (2008). [CrossRef]
  25. A. Aminzadeh, “Fluorescence bands in the FT-Raman spectra of some calcium minerals,” Spectrochim. Acta Part A 53693–697 (1997). [CrossRef]
  26. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Poppet, “UV Raman imaging: a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007). [CrossRef] [PubMed]
  27. N. M. Johnson and B. Fegley, “Longevity of fluorine-bearing tremolite on Venus,” Icarus 165(2), 340–348 (2003). [CrossRef]
  28. M. Gaft, R. Reisfeld, and G. Panczer, Modern Luminescence Spectroscopy of Minerals and Materials (Springer-Verlag, 2005).
  29. M. Gaft and L. Nagli, “Gated Raman spectroscopy: potential for fundamental and applied mineralogy,” Eur. J. Mineral. 21, 33–42 (2009). [CrossRef]
  30. T. Tahara and H. Hamaguchi, “Picosecond Raman spectroscopy using a streak camera,” Appl. Spectrosc. 47(4), 391–398(1993). [CrossRef]
  31. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Picosecond time-resolved Raman spectroscopy of solids: capabilities and limitations for fluorescence rejection and the influence of diffuse reflectance,” Appl. Spectrosc. 55, 1701–1708(2001). [CrossRef]
  32. H. Hamaguchi and T. L. Gustafson, “Ultrafast time-resolved spontaneous and coherent Raman spectroscopy: the structure and dynamics of photogenerated transient species,” Annu. Rev. Phys. Chem. 45, 593–622 (1994). [CrossRef]
  33. R. L. McCreery, “Photometric standards for Raman spectroscopy,” in Handbook of Vibrational Spectroscopy, J.M.Chalmers and P.R.Griffiths, eds. (Wiley, 2002).
  34. S. W. Ruff, P. R. Christensen, T. D. Glotch, D. L. Blaney, J. E. Moerch, and M. B. Wyatt, “The mineralogy of Gusev crater and Meridiani Planum derived from the Miniature Thermal Emission Spectrometers on the Spirit and Opportunity rovers,” in The Martian Surface: Composition, Mineralogy and Physical Properties, J.F.BellIII, ed. (Cambridge University Press, 2008). [CrossRef]
  35. J. M. Alia, H. G. M. Edwards, F. J. Garcia-Navarro, J. Parras-Armenteros, and C. J. Sanchez-Jimenez, “Application of FT-Raman spectroscopy to quality control in brick clays firing process,” Talanta 50, 291–298 (1999). [CrossRef]
  36. R. L. Frost and L. Rintoul, “Lattice vibrations of montmorillonite: an FT Raman and x-ray diffraction study,” Appl. Clay Sci. 11, 171–183 (1996). [CrossRef]
  37. J. Xu, I. S. Butler, and D. F. R. Gilson, “FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4·2H2O) and anhydrous dicalcium phosphate (CaHPO4),” Spectrochim. Acta Part A 55, 2801–2809 (1999). [CrossRef]
  38. A. Wang, J. F. Freeman, B. L. Jolliff, and I-M Chou, “Sulfates on mars, a systematic Raman spectroscopic study of hydration states of magnesium sulfates,” Geochim. Cosmochim. Acta 7024, 6118–6135 (2006). [CrossRef]
  39. P. Christensen, “Scientific overview of Mars sample return,” presented at the 22nd MEPAG Meeting, Monrovia, California, 17–18 March 2010.
  40. C. G. Salvo and A. Elfving, “Proposed Mars astrobiology explorer–Cacher (MAX-C) & ExoMars 2018 (MXM-2018) Mission Formulation Status,” presented at the 22nd MEPAG Meeting, Monrovia, California, 17–18 March 2010.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited