OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 403–408

Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique

Md. Faruque Hossain, Hau Ping Chan, and Mohammad Afsar Uddin  »View Author Affiliations

Applied Optics, Vol. 49, Issue 3, pp. 403-408 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple method for simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films by measuring the film refractive indices as a function of temperature ( d n / d T ). Usually, such d n / d T value is considered as the thermo-optic coefficient. However, in the thin film systems, the measured d n / d T values result from both the thermo-optic and stress-optic effects. To demonstrate the stress-induced effects, the d n / d T values have been investigated for two different polymers: benzocyclobutene (high film stress) and epoxy 3505 (negligible film stress), using a prism coupler technique. The finite element method has been used so as to predict the stresses in the polymer film and, by combining them with the experimental d n / d T values, the individual thermo-optic and stress-optic coefficients have been determined. We found that the obtained thermo-optic coefficient is significantly different than the measured d n / d T values. The method is generic in nature and can thus be applied to a wide range of polymer waveguide materials.

© 2010 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.6840) Materials : Thermo-optical materials
(310.6860) Thin films : Thin films, optical properties
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Thin Films

Original Manuscript: November 12, 2009
Revised Manuscript: December 16, 2009
Manuscript Accepted: December 21, 2009
Published: January 14, 2010

Md. Faruque Hossain, Hau Ping Chan, and Mohammad Afsar Uddin, "Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique," Appl. Opt. 49, 403-408 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14, 1339-1365 (2002). [CrossRef]
  2. W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288, 100-104 (2006). [CrossRef]
  3. H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15, 1210-1212 (2003). [CrossRef]
  4. K. X. Chen, P. L. Chu, H. P. Chan, and K. S. Chiang, “Three-dimensional broadband polymer optical waveguide switch matrix,” Appl. Opt. 46, 8188-8192 (2007). [CrossRef] [PubMed]
  5. W. Y. Chan, K. X. Chen, H. P. Chan, B. P. Pal, and R. K. Varshney, “A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach-Zehnder interferometers,” Opt. Commun. 282, 883-886 (2009). [CrossRef]
  6. K. X. Chen, K. S. Chiang, and H. P. Chan, “Broadband multi-port dynamic optical power distributor based on thermo-optic polymer waveguide vertical couplers,” IEEE Photon. Technol. Lett. 20, 273-275 (2008). [CrossRef]
  7. K. K. Chung, H. P. Chan, and P. L. Chu, “A 1×4 polarization and wavelength independent optical power splitter based on a novel wide-angle low-loss Y-junction,” Opt. Commun. 267, 367-372 (2006). [CrossRef]
  8. N. Keil, H. H. Yao, and C. Zawadzki, “Athermal polarisation-independent arrayed-waveguide grating (AWG) multiplexer using an all-polymer approach,” Appl. Phys. B 73, 619-622(2001). [CrossRef]
  9. S. L. Prins, A. C. Barron, W. C. Herrmann, and J. R. McNeil, “Effect of stress on performance of dense wavelength division multiplexing filters: thermal properties,” Appl. Opt. 43, 633-637 (2004). [CrossRef] [PubMed]
  10. M. Huang and X. Yan, “Thermal-stress effects on the temperature sensitivity of optical waveguides,” J. Opt. Soc. Am. B 20, 1326-1333 (2003). [CrossRef]
  11. S. L. Prins, A. C. Barron, W. C. Herrmann, and J. R. McNeil, “Effect of stress on performance of dense wavelength division multiplexing filters: optical properties,” Appl. Opt. 43, 626-632 (2004). [CrossRef] [PubMed]
  12. E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438-1440(2002). [CrossRef]
  13. Z. Elalamy, E. Drouard, T. M. Govern, L. Escoubas, J.-J. Simon, and F. Flory, “Thermo-optical coefficients of sol-gel ZrO2 thin films,” Opt. Commun. 235, 365-372(2004). [CrossRef]
  14. Y. Terui and S. Ando, “Anisotropy in thermo-optic coefficients of polyimide films formed on Si substrate,” Appl. Phys. Lett. 83, 4755-4757 (2003). [CrossRef]
  15. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, “Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12),” Appl. Opt. 35, 3562-3569 (1996). [CrossRef] [PubMed]
  16. S. S. Bayya, G. D. Chin, J. S. Sanghera, I. D. Aggarwal, and J. A. Detrio, “Thermo-optic coefficient of barium gallogermanate glass,” Appl. Opt. 46, 7889-7891 (2007). [CrossRef] [PubMed]
  17. Y.-J. Kim, U.-C. Paek, and B. H. Lee, “Measurement of refractive-index variation with temperature by use of long-period fiber gratings,” Opt. Lett. 27, 1297-1299 (2002). [CrossRef]
  18. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147-7153 (2004). [CrossRef]
  19. K. Fischer, J. Muller, R. Hoffmann, F. Wasse, and D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163-169 (1994). [CrossRef]
  20. T. C. Hodge, S. A. B. Allen, and P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polym. Sci. B Polym. Phys. 37, 311-321(1999). [CrossRef]
  21. M.-Y. Tsai, C. H. J. Hsu, and C. T. O. Wang, “Investigation of thermomechanical behaviors of flip chip BGA packages during manufacturing process and thermal cycling,” IEEE Trans. Comp. Packag. Technol. 27, 568-576 (2004). [CrossRef]
  22. M. F. Hossain, H. P. Chan, M. A. Uddin, and R. K. Y. Li, “Stress-induced birefringence characteristics of polymer optical rib waveguides,” J. Lightwave Technol. 27, 4678-4685(2009). [CrossRef]
  23. EMI Optocast Brochure, http://www.ccrepm.com/publish/article_3.shtml.
  24. Fused Quartz Properties & Usage Guide, http://www.quartz.com/gedata.html.
  25. C. -L. Tien, C. -C. Jaing, C. -C. Lee, and K. -P. Chuang, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681-1691 (2000). [CrossRef]
  26. G. Zhang and K. Sasaki, “Measuring anisotropic refractive indices and film thickness of thin organic crystals using the prism coupling method,” Appl. Opt. 27, 1358-1362 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited