OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 479–483

Mapping speed for an array of corrugated horns

Stephen Padin  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 479-483 (2010)
http://dx.doi.org/10.1364/AO.49.000479


View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

I address the choice of horn diameter for millimeter-wave array receivers with corrugated horns. For maximum point-source mapping speed, in both total power and polarization with typical receiver noise contributions and a close-packed horn array that fills the field of view, the optimum horn diameter is 1.6 1.7 F λ , where F is the focal ratio. A ± 25 % change in horn diameter gives < 10 % degradation in mapping speed. Correlated noise from the cold stop, atmosphere, and cosmic microwave background has little effect on the mapping speed and optimum horn diameter.

© 2010 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(350.1260) Other areas of optics : Astronomical optics
(350.4010) Other areas of optics : Microwaves
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Detectors

History
Original Manuscript: June 19, 2009
Revised Manuscript: December 3, 2009
Manuscript Accepted: December 21, 2009
Published: January 15, 2010

Citation
Stephen Padin, "Mapping speed for an array of corrugated horns," Appl. Opt. 49, 479-483 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-3-479


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas (Peter Peregrinus, 1984). [CrossRef]
  2. W. Hu and S. Dodelson, “Cosmic microwave background anisotropies,” Annu. Rev. Astron. Astrophys. 40, 171-216 (2002). [CrossRef]
  3. M. Zaldarriaga, “The polarization of the cosmic microwave background,” in Measuring and Modeling the Universe, Carnegie Observatories Astrophysics Series, W. L. Freedman, ed. (Cambridge U. Press, 2003), Vol. 2.
  4. U. Seljak and M. Zaldarriaga, “Signature of gravity waves in the polarization of the microwave background,” Phys. Rev. Lett. 78, 2054-2057 (1997). [CrossRef]
  5. M. Zaldarriaga and U. Seljak, “Gravitational lensing effect on cosmic microwave background polarization,” Phys. Rev. D 58, 023003 (1998). [CrossRef]
  6. K. W. Yoon, P. A. R. Ade, D. Barkats, J. O. Battle, E. M. Bierman, J. J. Bock, J. A. Brevik, H. C. Chiang, A. Crites, C. D. Dowell, L. Duband, G. S. Griffin, E. F. Hivon, W. L. Holzapfel, V. V. Hristov, B. G. Keating, J. M. Kovac, C. L. Kuo, A. E. Lange, E. M. Leitch, P. V. Mason, H. T. Nguyen, N. Ponthieu, Y. D. Takahashi, T. Renbarger, L. C. Weintraub, and D. Woolsey, “The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter,” Proc. SPIE 6275, 62751K (2006). [CrossRef]
  7. J. R. Hinderks, P. Ade, J. Bock, M. Bowden, M. L. Brown, G. Cahill, J. E. Carlstrom, P. G. Castro, S. Church, T. Culverhouse, R. Friedman, K. Ganga, W. K. Gear, S. Gupta, J. Harris, V. Haynes, B. G. Keating, J. Kovac, E. Kirby, A. E. Lange, E. Leitch, O. E. Mallie, S. Melhuish, Y. Memari, J. A. Murphy, A. Orlando, R. Schwarz, C. O'Sullivan, L. Piccirillo, C. Pryke, N. Rajguru, B. Rusholme, A. N. Taylor, K. L. Thompson, C. Tucker, A. H. Turner, E. Y. S. Wu, and M. Zemcov, “QUaD: a high-resolution cosmic microwave background polarimeter,” Astrophys. J. 692, 1221-1246 (2009). [CrossRef]
  8. P. Oxley, P. Ade, C. Baccigalupi, P. deBernardis, H.-M. Cho, M. J. Devlin, S. Hanany, B. R. Johnson, T. Jones, A. T. Lee, T. Matsumura, A. D. Miller, M. Milligan, T. Renbarger, H. G. Spieler, R. Stompor, G. S. Tucker, and M. Zaldarriaga, “The EBEX experiment,” Proc. SPIE 5543, 320-331 (2004). [CrossRef]
  9. R. H. Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light. I. basic theory: the correlation between photons in coherent beams of radiation,” Proc. R. Soc. A 242, 300-324 (1957). [CrossRef]
  10. R. H. Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light. II. an experimental test of the theory for partially coherent light,” Proc. R. Soc. A 243, 291-319 (1958). [CrossRef]
  11. J. M. Lamarre, “Photon noise in photometric instruments at far-infrared and submillimeter wavelengths,” Appl. Opt. 25, 870-876 (1986). [CrossRef] [PubMed]
  12. J. Zmuidzinas, “Thermal noise and correlations in photon detection,” Appl. Opt. 42, 4989-5008 (2003). [CrossRef] [PubMed]
  13. M. W. Griffin, J. J. Bock, and W. K. Gear, “Relative performance of filled and feedhorn-coupled focal-plane architectures,” Appl. Opt. 41, 6543-6554 (2002). [CrossRef] [PubMed]
  14. D. J. Benford, T. R. Hunter, and T. G. Phillips, “Noise equivalent power of background limited thermal detectors at submillimeter wavelengths,” Int. J. Infrared Milli. Waves 19, 931-938(1998). [CrossRef]
  15. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1-24 (1994). [CrossRef]
  16. P. Fellgett, R. Clark Jones, and R. Q. Twiss, “Fluctuations in photon streams,” Nature 184, 967-969 (1959). [CrossRef]
  17. M. C. Runyan, P. A. R. Ade, R. S. Bhatia, J. J. Bock, M. D. Daub, J. H. Goldstein, C. V. Haynes, W. L. Holzapfel, C. L. Kuo, A. E. Lange, J. Leong, M. Lueker, M. Newcomb, J. B. Peterson, C. Reichardt, J. Ruhl, G. Sirbi, E. Torbet, C. Tucker, A. D. Turner, and D. Woolsey, “ACBAR: the Arcminute Cosmology Bolometer Array Receiver,” Astrophys. J. Suppl. Ser. 149, 265-287 (2003). [CrossRef]
  18. P. F. Goldsmith, Quasioptical Systems (IEEE, 1998), Chaps. 6 and 7. [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), p. 439.
  20. R. J. Wylde, “Millimetre-wave Gaussian beam-mode optics and corrugated feed horns,” Proc. IEEE Part H Microwaves Antennas Propag. 131, 258-262 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited