OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: G78–G94

Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes

Olivier Lardière, Rodolphe Conan, Richard Clare, Colin Bradley, and Norbert Hubin  »View Author Affiliations

Applied Optics, Vol. 49, Issue 31, pp. G78-G94 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Sodium laser guide stars (LGSs) increase the sky coverage of adaptive optics systems but have their own limitations. For Shack–Hartmann wavefront sensors (WFSs), the slow variations of the sodium layer altitude and atom density profile induce changing errors on centroid measurements, especially for extremely large telescopes (ELTs), as the spot elongation increases with the telescope diameter. These LGS-induced aberrations are propagated on the science path and must be filtered out by (i) optimizing the LGS WFS and the centroiding algorithm and (ii) adding a high-pass filter on the LGS path and a low- bandwidth natural-guide-star (NGS) WFS. Within the context of the European Southern Observatory European-ELT project, five different centroiding algorithms, namely, the center-of-gravity (CoG), weighted CoG, matched filter, quad cell, and correlation, have been evaluated in a closed loop on the University of Victoria LGS wavefront sensing test bed. This optical bench reproduces, in the laboratory, both NGS spots and LGS elongated spots with changing sodium profiles and turbulence. Each centroiding algorithm performance is compared and discussed for a central- versus side-launch laser: different fields of view, pixel sampling, and signal-to-noise ratios.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Wavefront Sensors

Original Manuscript: March 2, 2010
Revised Manuscript: May 14, 2010
Manuscript Accepted: July 8, 2010
Published: August 5, 2010

Olivier Lardière, Rodolphe Conan, Richard Clare, Colin Bradley, and Norbert Hubin, "Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes," Appl. Opt. 49, G78-G94 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Herriot, P. Hickson, B. Ellerbroek, J.-P. Véran, C.-Y. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721I(2006). [CrossRef]
  2. M. A. van Dam, A. H. Bouchez, D. Le Mignant, and P. L. Wizinowich, “Quasi-static aberrations induced by laser guide stars in adaptive optics,” Opt. Express 14, 7535–7540(2006). [CrossRef] [PubMed]
  3. R. M. Clare, M. A. van Dam, and A. H. Bouchez, “Modeling low order aberrations in laser guide star adaptive optics systems,” Opt. Express 15, 4711–4725 (2007). [CrossRef] [PubMed]
  4. O. Lardière, R. Conan, C. Bradley, K. Jackson, and G. Herriot, “A laser guide star wavefront sensor bench demonstrator for TMT,” Opt. Express 16, 5527–5543 (2008). [CrossRef] [PubMed]
  5. O. Lardière, R. Conan, C. Bradley, K. Jackson, and P. Hampton, “Radial thresholding to mitigate laser guide star aberrations on centre-of-gravity-based Shack-Hartmann wavefront sensors,” Mon. Not. R. Astron. Soc. 398, 1461–1467 (2009). [CrossRef]
  6. S. Thomas, S. Adkins, D. Gavel, T. Fusco, and V. Michau, “Study of optimal wavefront sensing with elongated laser guide stars,” Mon. Not. R. Astron. Soc. 387, 173–187 (2008). [CrossRef]
  7. P. Wizinowich, D. Le Mignant, A. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, and D. M. Summers, “The W. M. Keck Observatory laser guide star adaptive optics system: overview,” Publ. Astron. Soc. Pac. 118, 297–309 (2006). [CrossRef]
  8. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006). [CrossRef]
  9. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, “Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics,” Opt. Lett. 29, 2743–2745 (2004). [CrossRef] [PubMed]
  10. L. Gilles and B. Ellerbroek, “Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing,” Opt. Lett. 33, 1159–1161 (2008). [CrossRef] [PubMed]
  11. R. Conan, O. Lardière, G. Herriot, C. Bradley, and K. Jackson, “Experimental assessment of the matched filter for laser guide star wavefront sensing,” Appl. Opt. 48, 1198–1211 (2009). [CrossRef]
  12. K. Ogata, Discrete-Time Control Systems (Prentice-Hall, 1994).
  13. D. S. Davis, P. Hickson, G. Herriot, and C.-Y. She, “Temporal variability of the telluric sodium layer,” Opt. Lett. 31, 3369–3371 (2006). [CrossRef] [PubMed]
  14. T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (2009). [CrossRef]
  15. L. Poyneer, “Scene-based Shack-Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42, 5807–5815(2003). [CrossRef] [PubMed]
  16. J. Nelson and G. H. Sanders, “The status of the Thirty Meter Telescope project,” Proc. SPIE 7012, 70121A (2008). [CrossRef]
  17. R. Gilmozzi and J. Spyromilio, “The 42 m European ELT: status,” Proc. SPIE 7012, 701219 (2008). [CrossRef]
  18. M. Kissler-Patig, “Overall science goals and top level AO requirements for E-ELT,” presented at the Conference on Adaptive Optics for Extremely Large Telescopes, Paris, France, June 2009.
  19. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976). [CrossRef]
  20. F. Assémat, R. Wilson, and E. Gendron, “Method for simulating infinitely long and non stationary phase screens with optimized memory storage,” Opt. Express 14, 988–999(2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited