OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 32 — Nov. 10, 2010
  • pp: 6348–6353

Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

Bingwei Xu, Yves Coello, Vadim V. Lozovoy, and Marcos Dantus  »View Author Affiliations


Applied Optics, Vol. 49, Issue 32, pp. 6348-6353 (2010)
http://dx.doi.org/10.1364/AO.49.006348


View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ( 2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675 990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

© 2010 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Spectroscopy

History
Original Manuscript: July 20, 2010
Revised Manuscript: October 10, 2010
Manuscript Accepted: October 12, 2010
Published: November 9, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Bingwei Xu, Yves Coello, Vadim V. Lozovoy, and Marcos Dantus, "Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses," Appl. Opt. 49, 6348-6353 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-32-6348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Goppert-Mayer, “Elementary file with two quantum fissures,” Ann. Phys. 9, 273–294 (1931). [CrossRef]
  2. W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961). [CrossRef]
  3. M. N. R. Ashfold and J. D. Howe, “Multiphoton spectroscopy of molecular species,” Annu. Rev. Phys. Chem. 45, 57–82 (1994). [CrossRef]
  4. W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  5. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005). [CrossRef] [PubMed]
  6. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005). [CrossRef]
  7. W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997). [CrossRef] [PubMed]
  8. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007). [CrossRef] [PubMed]
  9. M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009). [CrossRef] [PubMed]
  10. D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001). [CrossRef]
  11. P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000). [CrossRef]
  12. P. F. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett. 27, 1634–1636 (2002). [CrossRef]
  13. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). [CrossRef]
  14. C. Xu, J. Guild, W. W. Webb, and W. Denk, “Determination of absolute two-photon excitation cross-sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374(1995). [CrossRef] [PubMed]
  15. P. Kaatz and D. P. Shelton, “Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 16, 998–1006 (1999). [CrossRef]
  16. R. Kapoor, C. S. Friend, and A. Patra, “Two-photon-excited absolute emission cross-sectional measurements calibrated with a luminance meter,” J. Opt. Soc. Am. B 20, 1550–1554(2003). [CrossRef]
  17. M. Kauert, P. C. Stoller, M. Frenz, and J. Ricka, “Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique,” Opt. Express 14, 8434–8447 (2006). [CrossRef] [PubMed]
  18. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550–1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008). [CrossRef] [PubMed]
  19. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005). [CrossRef] [PubMed]
  20. K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008). [CrossRef]
  21. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37, 7352–7356 (1998). [CrossRef]
  22. G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001). [CrossRef]
  23. S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002). [CrossRef] [PubMed]
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006). [CrossRef]
  25. B. W. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939–10944 (2006). [CrossRef] [PubMed]
  26. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008). [CrossRef]
  27. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002). [CrossRef]
  28. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Second-harmonic generation frequency-resolved optical gating in the single-cycle regime,” IEEE J. Quantum Electron. 35, 459–478 (1999). [CrossRef]
  29. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006). [CrossRef]
  30. V. V. Lozovoy, B. W. Xu, J. C. Shane, and M. Dantus, “Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields,” Phys. Rev. A 74, 041805(2006). [CrossRef]
  31. R. D. Jones and P. R. Callis, “A power-squared sensor for 2-photon spectroscopy and dispersion of 2nd-order coherence,” J. Appl. Phys. 64, 4301–4305 (1988). [CrossRef]
  32. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004). [CrossRef] [PubMed]
  33. D. B. Spry, A. Goun, C. B. Bell III, and M. D. Fayer, “Identification and properties of the L1a and L1b states of pyranine,” J. Chem. Phys. 125, 144514 (2006). [CrossRef] [PubMed]
  34. V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited