OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 33 — Nov. 20, 2010
  • pp: 6512–6521

Femtosecond laser-induced thermal lens effect in chromium film

Linwei Zhu, Changhe Zhou, and Wei Jia  »View Author Affiliations


Applied Optics, Vol. 49, Issue 33, pp. 6512-6521 (2010)
http://dx.doi.org/10.1364/AO.49.006512


View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The thermal lens (TL) effect induced by femtosecond laser pulses in chromium film is reported. A Fresnel diffraction theory is used to explain the TL effect. The intensity profile of the TL calculated by the theoretical model is in agreement with the experimental results. The contrast ratio of the TL is defined to describe the TL effect, and we find that the maximum contrast ratio of the TL effect is obtained when the probe beam is recorded at a characteristic distance. The dependence of the contrast ratio of the TL on different pump laser power levels and delay times is also investigated. Numerical simulations are also consistent with the experimental results.

© 2010 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.6810) Lasers and laser optics : Thermal effects
(310.6860) Thin films : Thin films, optical properties
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 29, 2010
Manuscript Accepted: October 6, 2010
Published: November 18, 2010

Citation
Linwei Zhu, Changhe Zhou, and Wei Jia, "Femtosecond laser-induced thermal lens effect in chromium film," Appl. Opt. 49, 6512-6521 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-33-6512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. H. Y. Zalloum, M. Parrish, A. Terekhov, and W. Hofmeister, “On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing,” Opt. Express 18, 13122–13135 (2010). [CrossRef] [PubMed]
  2. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–374 (2010). [CrossRef]
  3. Q.-Z. Zhao, J.-R. Qiu, X.-W. Jiang, E.-W. Dai, C.-H. Zhou, and C.-S. Zhu, “Direct writing computer-generated holograms on metal film by an infrared femtosecond laser,” Opt. Express 13, 2089–2092 (2005). [CrossRef] [PubMed]
  4. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007). [CrossRef] [PubMed]
  5. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24, 1562–1568 (2007). [CrossRef]
  6. T. Wu, C. Zhou, E. Dai, and J. Xie, “Experimental study of the time-resolved reflectivity of chromium film,” Chin. Opt. Lett. 7, 653–655 (2009). [CrossRef]
  7. K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Femtosecond laser fabrication of microfluidic channels for organic photonic devices,” Appl. Opt. 48, G114–G118 (2009). [CrossRef]
  8. J. Xie, C. Zhou, W. Wang, and T. Wu, “Femtosecond laser induced microripple on PDMS surface,” Chin. Opt. Lett. 7, 715–717 (2009). [CrossRef]
  9. J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008). [CrossRef]
  10. L. Zhu, C. Zhou, T. Wu, W. Jia, Z. Fan, Y. Ma, and G. Niu, “Femtosecond off-axis digital holography for monitoring dynamic surface deformation,” Appl. Opt. 49, 2510–2518(2010). [CrossRef]
  11. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  12. M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996). [CrossRef]
  13. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26, 1002–1007 (2009). [CrossRef]
  14. E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995). [CrossRef] [PubMed]
  15. S.-H. Li, H.-B. He, Y.-G. Shan, D.-W. Li, Y.-A. Zhao, and Z.-X. Fan, “Enhanced surface thermal lensing for absorption evaluation and defect identification of optical films,” Appl. Opt. 49, 2417–2421 (2010). [CrossRef]
  16. H. Hao and B. Li, “Photothermal detuning for absorption measurement of optical coatings,” Appl. Opt. 47, 188–194(2008). [CrossRef] [PubMed]
  17. M. Andika, G. C. K. Chen, and S. Vasudevan, “Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle,” J. Opt. Soc. Am. B 27, 796–805 (2010). [CrossRef]
  18. J.-P. Bourgoin, S. Doiron, M. Deveaux, and A. Haché, “Single laser beam measurement of thermal diffusivity,” Appl. Opt. 47, 6530–6534 (2008). [CrossRef] [PubMed]
  19. J.-P. Bourgoin, G.-G. Allogho, and A. Haché, “Thermal measurement on subnanoliter sample volumes,” Appl. Opt. 49, 2547–2551 (2010). [CrossRef]
  20. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009). [CrossRef] [PubMed]
  21. R. A. Cruz, A. Marcano, C. Jacinto, and T. Catunda, “Ultrasensitive thermal lens spectroscopy of water,” Opt. Lett. 34, 1882–1884 (2009). [CrossRef] [PubMed]
  22. J. Moreau and V. Loriette, “Confocal thermal-lens microscope,” Opt. Lett. 29, 1488–1490 (2004). [CrossRef] [PubMed]
  23. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). [CrossRef] [PubMed]
  24. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 1408–1413 (2006). [CrossRef]
  25. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005). [CrossRef] [PubMed]
  26. J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990). [CrossRef] [PubMed]
  27. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007). [CrossRef]
  28. B.-C. Li, S.-Y. Zhang, J.-W. Fang, and X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997). [CrossRef]
  29. Z. Han, C. Zhou, and E. Dai, “Microripple structures induced by femtosecond laser pulses,” Chin. J. Lasers 34, 715–718(2007).
  30. E. A. Avallone and T. Baumeister, Marks’ Standard Handbook for Mechanical Engineers, 10th ed. (McGraw-Hill, 1996).
  31. I. Gerdova, X. Zhang, and A. Haché, “Optically tunable hollow Gaussian beams with thin metal films,” J. Opt. Soc. Am. B 23, 1934–1937 (2006). [CrossRef]
  32. S. Doiron and A. Haché, “Time evolution of reflective thermal lenses and measurement of thermal diffusivity in bulk solids,” Appl. Opt. 43, 4250–4253 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited