OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 701–707

Lateral resolution enhancement in confocal microscopy by vectorial aperture engineering

B. R. Boruah  »View Author Affiliations


Applied Optics, Vol. 49, Issue 4, pp. 701-707 (2010)
http://dx.doi.org/10.1364/AO.49.000701


View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This article reports the design and implementation of a lateral resolution-enhancement technique in confocal microscopy that can work, in principle, either in the reflection mode or in the fluorescence mode. Taking the difference between two images corresponding to two different vectorially (involving amplitude, phase, and polarization of light) engineered illumination pupils or apertures of a confocal microscope, high spatial frequency contents in the resultant image can be significantly enhanced. This can be realized by incorporating an extra vectorial beam-forming element into the illumination beam path of a conventional confocal microscope. The method of the proposed technique has been explained by giving it an analytical treatment supported by numerical simulation results. The technique has been implemented in a reflection mode confocal microscope and results obtained are presented.

© 2010 Optical Society of America

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(180.1790) Microscopy : Confocal microscopy
(230.6120) Optical devices : Spatial light modulators
(330.6130) Vision, color, and visual optics : Spatial resolution

ToC Category:
Microscopy

History
Original Manuscript: September 16, 2009
Revised Manuscript: December 8, 2009
Manuscript Accepted: December 11, 2009
Published: January 27, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Citation
B. R. Boruah, "Lateral resolution enhancement in confocal microscopy by vectorial aperture engineering," Appl. Opt. 49, 701-707 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-4-701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  2. M. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000). [CrossRef] [PubMed]
  3. R. Heintzmann, T. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  4. M. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793-796 (2006). [CrossRef]
  5. E. Betzig, G. Patterson, R. Sougrat, O. Lindwasser, S. Olenych, J. Bonifacino, M. Davidson, J. Lippincott-Schwartz, and H. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006). [CrossRef] [PubMed]
  6. T. Wilson, ed., Confocal Microscopy (Academic, 1990).
  7. J. E. Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006). [CrossRef]
  8. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  9. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153-1158 (2007). [CrossRef] [PubMed]
  10. M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002). [CrossRef] [PubMed]
  11. J. Baumgartl, R. P. A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, “Experimental observation of structural crossover in binary mixtures of colloidal hard spheres,” Phys. Rev. Lett. 98, 198303 (2007). [CrossRef] [PubMed]
  12. O. Tikhomirov, H. Jiang, and J. Levy, “Local ferroelectricity in SrTiO3 thin films,” Phys. Rev. Lett. 89, 147601 (2002). [CrossRef] [PubMed]
  13. K. Velikov, W. Vos, A. Moroz, and A. van Blaaderen, “Reflectivity of metallodielectric photonic glasses,” Phys. Rev. B 69, 075108 (2004). [CrossRef]
  14. A. Toriumi, S. Kawata, and M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924-1926 (1998). [CrossRef]
  15. S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51, 923-930 (2004). [CrossRef] [PubMed]
  16. G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J. Invest. Dermatol. 127, 2759-2765 (2007). [CrossRef] [PubMed]
  17. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-247(2000). [CrossRef]
  18. L. R. Qiu, X. Ding, and J. Liu, “Confocal measurement approach for enhancing lateral resolution using a phase-only pupil,” J. Phys. Conf. Ser. 13, 422-425 (2005). [CrossRef]
  19. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267-278 (1999). [CrossRef]
  20. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  21. G. Boyer and V. Sarafis, “Two pinhole superresolution using spatial filters,” Optik (Jena) 112, 177-179 (2001). [CrossRef]
  22. M. Martinez-Corral, M. Caballero, C. Ibáñez-López, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313-318 (2003). [CrossRef] [PubMed]
  23. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501-505(2008). [CrossRef]
  24. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855-1859 (2008). [CrossRef]
  25. O. Haeberlé and B. Simon, “Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400-408 (2006). [CrossRef]
  26. J. Goodman, Introduction To Fourier Optics (Roberts, 2004).
  27. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959). [CrossRef]
  28. B. R. Boruah and M. A. A. Neil, “Focal field computation of an arbitrarily polarized beam using fast Fourier transforms,” Opt. Commun. 282, 4660-4667 (2009). [CrossRef]
  29. M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197, 219-223 (2000). [CrossRef] [PubMed]
  30. B. R. Boruah, “Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator,” Am. J. Phys. 77, 331-336 (2009). [CrossRef]
  31. B. R. Boruah and M. A. A. Neil, “Laser scanning confocal microscope with programmable amplitude, phase and polarisation of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009). [CrossRef] [PubMed]
  32. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33, 113-115(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited