OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 871–874

Diode laser frequency locking using Zeeman effect and feedback in temperature

Weliton Soares Martins, Mayara Grilo, Manoel Brasileiro, Orlando di Lorenzo, Marcos Oriá, and Martine Chevrollier  »View Author Affiliations


Applied Optics, Vol. 49, Issue 5, pp. 871-874 (2010)
http://dx.doi.org/10.1364/AO.49.000871


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the stabilization of a laser diode frequency, using the circular dichroism of an alkali vapor and feeding back the correction signal to the temperature actuator of the junction. The conditions of operation and the performance of such a system are discussed.

© 2010 Optical Society of America

OCIS Codes
(020.7490) Atomic and molecular physics : Zeeman effect
(140.2020) Lasers and laser optics : Diode lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 23, 2009
Revised Manuscript: December 28, 2009
Manuscript Accepted: January 12, 2010
Published: February 4, 2010

Citation
Weliton Soares Martins, Mayara Grilo, Manoel Brasileiro, Orlando di Lorenzo, Marcos Oriá, and Martine Chevrollier, "Diode laser frequency locking using Zeeman effect and feedback in temperature," Appl. Opt. 49, 871-874 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-5-871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991). [CrossRef]
  2. A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990). [CrossRef]
  3. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987). [CrossRef] [PubMed]
  4. P. Laurent, A. Clairon, and C. Bréant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131-1142 (1989). [CrossRef]
  5. M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981). [CrossRef]
  6. G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the caesium D2 line,” Rev. Sci. Instrum. 65, 1502-1505 (1994). [CrossRef]
  7. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991). [CrossRef] [PubMed]
  8. A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926-930 (1972). [CrossRef]
  9. R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573-575 (1973). [CrossRef]
  10. B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994). [CrossRef]
  11. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998). [CrossRef]
  12. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002). [CrossRef]
  13. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003). [CrossRef]
  14. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001). [CrossRef]
  15. This system has been used in our laboratory, in atom surface experiments requiring a steady illumination by a fixed-frequency pump diode laser: see W. S. Martins, M. Oriá, and M. Chevrollier, “Probing laser-induced adsorption with selective reflection,”Nineteenth International Conference on Laser Spectroscopy, ICOLS'09, Kussharo, Hokkaido, Japan, 2009.
  16. The magnetic field is produced by permanent magnets removed from loudspeakers. The inhomogeneities at the extremities of the cell do not affect the performance of the system.
  17. The laser is mounted on an L-shaped copper base with a large (3 cm×3 cm) exchange surface in contact with a TEC element.
  18. W. Demtröder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, 2003).
  19. The system recovers to stabilization after we strongly hit our homemade optical table with a rubber hammer: see .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited