OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 927–935

Atmospheric degradation correction of terahertz beams using multiscale signal restoration

Choonwoo Ryu and Seong G. Kong  »View Author Affiliations

Applied Optics, Vol. 49, Issue 5, pp. 927-935 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present atmospheric degradation correction of terahertz (THz) beams based on multiscale signal decomposition and a combination of a Wiener deconvolution filter and artificial neural networks. THz beams suffer from strong attenuation by water molecules in the air. The proposed signal restoration approach finds the filter coefficients from a pair of reference signals previously measured from low- humidity conditions and current background air signals. Experimental results with two material samples of different chemical compositions demonstrate that the multiscale signal restoration technique is effective in correcting atmospheric degradation compared to individual and non-multiscale approaches.

© 2010 Optical Society of America

OCIS Codes
(200.4260) Optics in computing : Neural networks
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.7410) Imaging systems : Wavelets

ToC Category:
Imaging Systems

Original Manuscript: October 28, 2009
Revised Manuscript: January 11, 2010
Manuscript Accepted: January 15, 2010
Published: February 9, 2010

Choonwoo Ryu and Seong G. Kong, "Atmospheric degradation correction of terahertz beams using multiscale signal restoration," Appl. Opt. 49, 927-935 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. v. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128-1130 (1989). [CrossRef] [PubMed]
  2. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379-390 (1998). [CrossRef]
  3. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26-33 (2002). [CrossRef]
  4. A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, “Terahertz imaging of hidden paint layers on canvas,” Opt. Express 17, 3407-3416 (2009). [CrossRef] [PubMed]
  5. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005). [CrossRef]
  6. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagat. Mag. 49, 24-39 (2007). [CrossRef]
  7. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393-395 (2008). [CrossRef] [PubMed]
  8. H. M. Pickett, E. A. Cohen, B. J. Drouin, and J. C. Pearson, “Submillimeter, millimeter, and microwave spectral line catalog,” Technical report (JPL, 2003).
  9. R. W. Schafer, R. M. Mersereau, and M. A. Richards, “Constrained iterative restoration algorithm,” Proc. IEEE 69, 432-450 (1981). [CrossRef]
  10. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Numerical removal of water vapour effects from terahertz time-domain spectroscopy measurements,” Proc. R. Soc. London Ser. A 464, 2435-2456 (2008). [CrossRef]
  11. Y. Wang, Z. Zhao, Z. Chen, Y. Zhang, L. Zhang, and K. Kang, “Suppression of spectral interferences due to water-vapor rotational transitions in terahertz time-domain spectroscopy,” Opt. Lett. 33, 1354-1356 (2008). [CrossRef] [PubMed]
  12. Y. Wang, Z. Chen, Z. Zhao, L. Zhang, K. Kang, and Y. Zhang, “Restoration of terahertz signals distorted by atmospheric water vapor absorption,” J. Appl. Phys. 105, 103105(2009). [CrossRef]
  13. Y. Wang, Z. Zhao, Z. Chen, K. Kang, B. Feng, and Y. Zhang, “Terahertz absorbance spectrum fitting method for quantitative detection of concealed contraband,” J. Appl. Phys. 102, 113108 (2007). [CrossRef]
  14. S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103, 113105 (2008). [CrossRef]
  15. M. Unser and T. Blu, “Wavelet theory demystified,” IEEE Trans. Signal Process. 51, 470-483 (2003). [CrossRef]
  16. A. M. Rao and D. L. Jones, “A denoising approach to multisensor signal estimation,” IEEE Trans. Signal Process. 48, 1225-1234 (2000). [CrossRef]
  17. Y. Liang and E. W. Page, “Multiresolution learning paradigm and signal prediction,” IEEE Trans. Signal Process. 45, 2858-2864 (1997). [CrossRef]
  18. Y. Liang and Xu Liang, “Improving signal prediction performance of neural networks through multiresolution learning approach,” IEEE Trans. Syst. Man Cybern. B 36, 341-352(2006). [CrossRef]
  19. B. Ferguson and D. Abbott, “De-noising techniques for terahertz responses of biological samples,” Microelectron. J. 32, 943-953 (2001). [CrossRef]
  20. E. Berry, R. D. Boyle, A. J. Fitzgerald, and J. W. Handley, “Time-frequency analysis in terahertz-pulsed imaging,” in Computer Vision beyond the Visible Spectrum, B.Bhanu and I.Pavlidis, eds. (Springer, 2005), pp. 276-311.
  21. X. X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “Terahertz computed tomographic reconstruction and its wavelet-based segmentation by fusion,” in Proceedings of IEEE International Symposium on Industrial Electronics (IEEE2007), pp. 3409-3414.
  22. X. X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “Statistical model for the classification of the wavelet transforms of T-ray pulses,” in Proceedings of International Conference on Pattern Recognition (IEEE2006), pp. 236-239.
  23. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924-2926 (1996). [CrossRef]
  24. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors,” Appl. Phys. Lett. 88, 141106 (2006). [CrossRef]
  25. M. Vetterli and C. Herley, “Wavelets and filter banks: theory and design,” IEEE Trans. Signal Process. 40, 2207-2232 (1992). [CrossRef]
  26. S. W. Moon and S. G. Kong, “Block-based neural networks,” IEEE Trans. Neural Netw. 12, 307-317 (2001). [CrossRef]
  27. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice Hall, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited