OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: A18–A22

Focusing surface waves with an inhomogeneous metamaterial lens

Marco A. Escobar, Matthieu Berthomé, Changbao Ma, and Zhaowei Liu  »View Author Affiliations

Applied Optics, Vol. 49, Issue 7, pp. A18-A22 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new type of surface wave lens that is made of a circular in-plane inhomogeneous metamaterial slab and numerically demonstrate its capability to focus surface waves at optical frequencies. This approach can achieve a smaller focal spot size than the previously demonstrated Ag plasmonic lens. The use of inhomogeneous metamaterials is to decrease the high losses that are usually associated with metamaterials that support large surface k vectors by reducing the propagation distance in high loss metamaterials.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

Original Manuscript: August 3, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: October 21, 2009
Published: November 10, 2009

Marco A. Escobar, Matthieu Berthomé, Changbao Ma, and Zhaowei Liu, "Focusing surface waves with an inhomogeneous metamaterial lens," Appl. Opt. 49, A18-A22 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267-297 (2007). [CrossRef]
  4. Z.-W. Liu, Q.-H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano. Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  5. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670-672 (2005). [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004). [CrossRef] [PubMed]
  7. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  8. Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, and X. Zhang, “Broad band two-dimensional manipulation of surface plasmons,” Nano. Lett. 9, 462-466 (2009). [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano. Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  10. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  11. H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17, 7519-7524 (2009). [CrossRef] [PubMed]
  12. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  13. L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002). [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  15. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006). [CrossRef]
  16. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664-5670(2006). [CrossRef] [PubMed]
  17. W. Yan, L. Shen, L. Ran, and J. A. Kong, “Surface modes at the interfaces between isotropic media and indefinite media,” J. Opt. Soc. Am. A 24, 530-535 (2007). [CrossRef]
  18. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  19. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006). [CrossRef]
  20. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5, 741-747 (2006). [CrossRef] [PubMed]
  21. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466-1468 (1995). [CrossRef] [PubMed]
  22. T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, “Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates,” Science 290, 2126-2129 (2000). [CrossRef] [PubMed]
  23. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439-15448 (2008). [CrossRef] [PubMed]
  24. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16, 8969-8980(2008). [CrossRef] [PubMed]
  25. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano. Lett. 9, 2139-2143 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited