OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1480–1488

Motion artifact suppression in full-field optical coherence tomography

Delphine Sacchet, Michal Brzezinski, Julien Moreau, Patrick Georges, and Arnaud Dubois  »View Author Affiliations

Applied Optics, Vol. 49, Issue 9, pp. 1480-1488 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Significant motion artifacts limit the performance of conventional full-field optical coherence tomography (FF-OCT) for in vivo imaging. We present a theoretical and experimental study of those limitations. A new FF-OCT system suppressing most of artifacts due to sample motions is demonstrated using instantaneous phase shifting with nonpolarizing optics and pulsed illumination. The experimental setup is based on a Linnik-type interferometer illuminated by the superluminescence emission from a Ti Al 2 O 3 waveguide crystal. En face tomographic images are calculated as a combination of two phase-opposed interferometric images acquired simultaneously by two CCD cameras placed at both outputs of the interferometer, with a spatial resolution of 0.8 μm × 1.6 μm ( axial × transverse ) and a detection sensitivity of 60 dB .

© 2010 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.3170) Microscopy : Interference microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 2, 2009
Revised Manuscript: February 3, 2010
Manuscript Accepted: February 10, 2010
Published: March 10, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Delphine Sacchet, Michal Brzezinski, Julien Moreau, Patrick Georges, and Arnaud Dubois, "Motion artifact suppression in full-field optical coherence tomography," Appl. Opt. 49, 1480-1488 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef]
  2. A. F. Fercher, “Optical coherence tomography,” J Biomed. Opt. 1, 157-173 (1996). [CrossRef]
  3. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147-149 (1998). [CrossRef]
  4. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white-light full-field optical coherence tomography,” Opt. Express 13, 6286-6295 (2005). [CrossRef]
  5. A. F. Fercher, C. K. Hitzenberg, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [CrossRef]
  6. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004). [CrossRef]
  7. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and G. J. Fujimoto, “Rapid acquisition of in-vivobiological images by use of optical coherence tomography,” Opt. Lett. 21, 1408-1410 (1996). [CrossRef]
  8. A. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. Ung-Arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998). [CrossRef]
  9. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992). [CrossRef]
  10. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004). [CrossRef]
  11. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004). [CrossRef]
  12. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530-533 (2002). [CrossRef]
  13. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874-2883 (2004). [CrossRef]
  14. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002). [CrossRef]
  15. A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region,” Opt. Commun. 266, 738-743 (2006). [CrossRef]
  16. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004). [CrossRef]
  17. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637-6645 (2002). [CrossRef]
  18. J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt. 47, 459-466 (2008). [CrossRef]
  19. G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351-1353 (2005). [CrossRef]
  20. M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674-683(2009). [CrossRef]
  21. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816-818 (2003). [CrossRef]
  22. M. A. Choma, C. Yand, and J. A. Izatt, “Instantaneous quandrature low-coherence interferometry with 3×3 fiber optic couplers,” Opt. Lett. 28, 2162-2164 (2003). [CrossRef]
  23. R. J. Aldifi, W. J. MacIntyre, and R. Haaga, “The effects of biological motion in CT resolution,” Am. J. Radiol. 127, 11-15(1976).
  24. M. L. Wood and R. M. Henkelman, “NMR image artifact from periodic motion,” Med. Phys. 12, 143-151(1985). [CrossRef]
  25. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998(2004). [CrossRef]
  26. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125-133 (1986). [CrossRef]
  27. A. M. Kowalevicz, T. Ko, I. Hart, and G. J. Fujimoto, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349-353(2002).
  28. D. M. Gale, M. I. Pether, and J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131-148 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited