OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1539–1548

Least-squares calibration method for fringe projection profilometry considering camera lens distortion

Lei Huang, Patrick S. K. Chua, and A. Asundi  »View Author Affiliations


Applied Optics, Vol. 49, Issue 9, pp. 1539-1548 (2010)
http://dx.doi.org/10.1364/AO.49.001539


View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using the least-squares fitting approach, the calibration procedure for fringe projection profilometry becomes more flexible and easier, since neither the measurement of system geometric parameters nor precise control of plane moving is required. With consideration of camera lens distortion, we propose a modified least-squares calibration method for fringe projection profilometry. In this method, camera lens distortion is involved in the mathematical description of the system for least-squares fitting to reduce its influence. Both simulation and experimental results are shown to verify the validity and ease of use of this modified calibration method.

© 2010 Optical Society of America

OCIS Codes
(150.6910) Machine vision : Three-dimensional sensing
(150.1488) Machine vision : Calibration

ToC Category:
Machine Vision

History
Original Manuscript: September 22, 2009
Revised Manuscript: November 1, 2009
Manuscript Accepted: November 1, 2009
Published: March 11, 2010

Citation
Lei Huang, Patrick S. K. Chua, and A. Asundi, "Least-squares calibration method for fringe projection profilometry considering camera lens distortion," Appl. Opt. 49, 1539-1548 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-9-1539


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Harding, “Industrial metrology: engineering precision,” Nat. Photon. 2, 667-669 (2008). [CrossRef]
  2. S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601-123608 (2006). [CrossRef]
  3. Z. Wang, H. Du, S. Park, and H. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48, 1052-1061 (2009). [CrossRef]
  4. Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3-D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601-113607 (2005). [CrossRef]
  5. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105-3108 (1984). [CrossRef] [PubMed]
  6. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977-3982 (1983). [CrossRef] [PubMed]
  7. D. J. Bone, H. A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25, 1653-1660 (1986). [CrossRef] [PubMed]
  8. X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263-284 (2001). [CrossRef]
  9. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004). [CrossRef]
  10. Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5408 (2008). [CrossRef] [PubMed]
  11. Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45, 045601 (2006). [CrossRef]
  12. B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416-418 (2009). [CrossRef] [PubMed]
  13. Q. Hu, P. S. Huang, Q. Fu, and F.-P. Chiang, “Calibration of a three-dimensional shape measurement system,” Opt. Eng. 42, 487-493 (2003). [CrossRef]
  14. X. Su, W. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43, 708-712 (2004). [CrossRef]
  15. L.-C. Chen and C.-C. Liao, “Calibration of 3D surface profilometry using digital fringe projection,” Meas. Sci. Technol. 16, 1554-1566 (2005). [CrossRef]
  16. A. Maurel, P. Cobelli, V. Pagneux, and P. Petitjeans, “Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry,” Appl. Opt. 48, 380-392 (2009). [CrossRef] [PubMed]
  17. H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216, 65-80 (2003). [CrossRef]
  18. M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole-space tabulation method,” in Two- and Three-Dimensional Methods for Inspection and Metrology VI (SPIE, 2008), pp. 706606-706608.
  19. H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Opt. Eng. 44, 033603-033609 (2005). [CrossRef]
  20. H. Du and Z. Wang, “Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system,” Opt. Lett. 32, 2438-2440 (2007). [CrossRef] [PubMed]
  21. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330-1334(2000). [CrossRef]
  22. J. Y. Bouguet, “Camera calibration toolbox for MATLAB,” http://www.vision.caltech.edu/bouguetj/calib_doc.
  23. J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp. 1106-1112. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited