OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1563–1573

Laser optical gas sensor by photoexcitation effect on refractive index

Geunsik Lim, Upul P. DeSilva, Nathaniel R. Quick, and Aravinda Kar  »View Author Affiliations

Applied Optics, Vol. 49, Issue 9, pp. 1563-1573 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2027 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser optical gas sensors are fabricated by using the crystalline silicon carbide polytype 6 H - Si C , which is a wide-bandgap semiconductor, and tested at high temperatures up to 650 ° C . The sensor operates on the principle of semiconductor optics involving both the semiconductor and optical properties of the material. It is fabricated by doping 6 H - Si C with an appropriate dopant such that the dopant energy level matches the quantum of energy of the characteristic radiation emitted by the combustion gas of interest. This radiation changes the electron density in the semiconductor by photoexcitation and, thereby, alters the refractive index of the sensor. The variation in the refractive index can be determined from an interference pattern. Such patterns are obtained for the reflected power of a He–Ne laser of wavelength 632.8 nm as a function of temperature. SiC sensors have been fabricated by doping two quadrants of a 6 H - Si C chip with Ga and Al of dopant energy levels E V + 0.29 eV and E V + 0.23 eV , respectively. These doped regions exhibit distinct changes in the refractive index of SiC in the presence of carbon dioxide ( CO 2 ) and nitrogen monoxide (NO) gases respectively. Therefore Ga- and Al-doped 6 H - Si C can be used for sensing CO 2 and NO gases at high temperatures, respectively.

© 2010 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: January 7, 2010
Manuscript Accepted: February 18, 2010
Published: March 11, 2010

Geunsik Lim, Upul P. DeSilva, Nathaniel R. Quick, and Aravinda Kar, "Laser optical gas sensor by photoexcitation effect on refractive index," Appl. Opt. 49, 1563-1573 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000). [CrossRef]
  2. C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000). [CrossRef]
  3. K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002). [CrossRef]
  4. N. G. Wright and A. B. Horsfall, “SiC sensors: a review,” J. Phys. D 40, 6345-6354 (2007). [CrossRef]
  5. K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).
  6. P. Tobias, B. Golding, and R. Ghosh, “Interface states in high temperature gas sensors based on SiC,” IEEE Sens. J. 3, 543-547 (2003). [CrossRef]
  7. P. Tobias, H. Hui, M. Koochesfahani, and R. N. Ghosh, “Millisecond response time measurements of high temperature gas sensors,” in IEEE Sensors 2004 (IEEE, 2004), pp. 24-27.
  8. A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000). [CrossRef]
  9. A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001). [CrossRef]
  10. R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006). [CrossRef]
  11. S. Dakshinamurthy, N. R. Quick, and A. Kar, “Temperature-dependent optical properties of silicon carbide for wireless temperature sensors,” J. Phys. D 40, 353-360 (2007). [CrossRef]
  12. S. Dakshinamurthy, N. R. Quick, and A. Kar, “SiC-based optical interferometry at high pressure and temperature for pressure and chemical sensing,” J. App. Phys. 99, 094902(2006). [CrossRef]
  13. A. Chakravarty, N. Quick, and A. Kar, “Decoupling of silicon carbide optical sensor response for temperature and pressure measurements,” J. Appl. Phys. 102, 073111 (2007). [CrossRef]
  14. E. Hecht, Optics (Pearson Education, 2002), pp. 113-121, 426-427.
  15. A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999). [CrossRef]
  16. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006). [CrossRef]
  17. H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006). [CrossRef] [PubMed]
  18. A. A. Lebedev, “Deep-level defects in SiC materials and devices,” in Silicon Carbide: Materials, Processing, and Devices, Z. C. Feng and J. H. Zhao, eds. Vol. 20 in series on Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121-163 .
  19. A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107-130 (1999). [CrossRef]
  20. T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).
  21. A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).
  22. S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 21611867 (2008). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999). [PubMed]
  24. Z. Li and R. C. Bradt, “Thermal expansion and elastic anisotropies of SiC as related to polytype structure,” in Silicon Carbide '87: Proceedings of the Silicon Carbide 1987 Symposium (American Ceramic Society,1989), pp. 313-339.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited