OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 1 — Jan. 1, 2011
  • pp: 22–27

Phase recovery from a single interferogram with closed fringes by phase unwrapping

Jesús Muñoz-Maciel, Francisco J. Casillas-Rodríguez, Miguel Mora-González, Francisco G. Peña-Lecona, Víctor M. Duran-Ramírez, and Gilberto Gómez-Rosas  »View Author Affiliations


Applied Optics, Vol. 50, Issue 1, pp. 22-27 (2011)
http://dx.doi.org/10.1364/AO.50.000022


View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new algorithm for phase determination from a single interferogram with closed fringes based on an unwrapping procedure. Here we use bandpass filtering in the Fourier domain, obtaining two wrapped phases with sign changes corresponding to the orientation of the applied filters. An unwrapping scheme that corrects the sign ambiguities by comparing the local derivatives is then proposed. This can be done, assuming that the phase derivatives do not change abruptly among adjacent areas as occurs with smooth continuous phase maps. The proposed algorithm works fast and is robust against noise, as demonstrated in experimental and simulated data.

© 2010 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2650) Image processing : Fringe analysis
(100.5070) Image processing : Phase retrieval
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: June 1, 2010
Revised Manuscript: November 5, 2010
Manuscript Accepted: November 6, 2010
Published: December 21, 2010

Citation
Jesús Muñoz-Maciel, Francisco J. Casillas-Rodríguez, Miguel Mora-González, Francisco G. Peña-Lecona, Víctor M. Duran-Ramírez, and Gilberto Gómez-Rosas, "Phase recovery from a single interferogram with closed fringes by phase unwrapping," Appl. Opt. 50, 22-27 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-1-22


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  2. J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D.Malacara, ed. (Wiley, 1992), pp. 501–598.
  3. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160(1982). [CrossRef]
  4. M. Kujawinska and J. Schmidt, “Spatial-carrier phase-shifting technique of fringe pattern analysis,” Proc. SPIE 1508, 61–67 (1991). [CrossRef]
  5. M. Pirga and M. Kujawinska, “Two-directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34, 2459–2466 (1995). [CrossRef]
  6. M. Servin and R. Rodriguez-Vera, “Two dimensional phase locked loop demodulation of carrier frequency interferograms,” J. Mod. Opt. 40, 2087–2094 (1993). [CrossRef]
  7. J. Kozlowski and G. Serra, “New modified phase locked loop method for fringe pattern demodulation,” Opt. Eng. 36, 2025–2030 (1997). [CrossRef]
  8. J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26, 5245–5257 (1987). [CrossRef] [PubMed]
  9. J. Muñoz, M. Strojnik, and G. Páez, “Detection and interpretation of high-frequency spatial interferograms,” Proc. SPIE 4486, 523–532 (2002). [CrossRef]
  10. K. H. Womack, “Interferometric phase measurement using spatial synchronous detection,” Opt. Eng. 23, 391–395 (1984).
  11. M. Servin, J. L. Marroquin, and F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,” Appl. Opt. 36, 4540–4548(1997). [CrossRef] [PubMed]
  12. M. Servin, J. L. Marroquin, and F. J. Cuevas, “Fringe follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695 (2001). [CrossRef]
  13. J. A. Quiroga, M. Servin, and F. J. Cuevas, “Modulo 2π fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002). [CrossRef]
  14. K. G. Larkin, D. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns: I. general background to the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862–1870 (2001). [CrossRef]
  15. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns: II. stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1871–1881 (2001). [CrossRef]
  16. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3, 847–855 (1986). [CrossRef]
  17. J. Muñoz, F. Lecona, C. Castillo, F. Casillas, V. Duran, and M. Mora, “Phase recovery from a single interferogram using multiple Fourier transforms,” Proc. SPIE 6292, 62920D (2006). [CrossRef]
  18. Q. Kemao and H. Seah, “Sequential demodulation of a single fringe pattern guided by local frequencies,” Opt. Lett. 32, 127–129 (2007). [CrossRef]
  19. J. L. Marroquin and M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995). [CrossRef]
  20. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited