OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 1 — Jan. 1, 2011
  • pp: 28–32

Electric field control of a Bragg diffraction optical beam splitter based on a cubic K 0.99 Li 0.01 Ta 0.63 Nb 0.37 O 3 single crystal

Dewei Gong, Hao Tian, Liying Tan, and Zhongxiang Zhou  »View Author Affiliations

Applied Optics, Vol. 50, Issue 1, pp. 28-32 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have realized an electric field controlled Bragg diffraction optical beam splitter based on a photorefractive Bragg diffraction grating. In our experiments, the splitter was produced by wave coupling ( 532.0 nm ) with a potassium lithium tantalate niobate single crystal. In the process of splitting, the incident beam could be split into multioutput beams by the splitter. The influence of an externally applied electric field was studied, and the results show that the intensity of the Bragg diffraction could be controlled by the electric field. The polarization properties of the splitter are discussed.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(190.3270) Nonlinear optics : Kerr effect

ToC Category:
Diffraction and Gratings

Original Manuscript: August 18, 2010
Revised Manuscript: November 7, 2010
Manuscript Accepted: November 11, 2010
Published: December 21, 2010

Dewei Gong, Hao Tian, Liying Tan, and Zhongxiang Zhou, "Electric field control of a Bragg diffraction optical beam splitter based on a cubic K0.99Li0.01Ta0.63Nb0.37O3 single crystal," Appl. Opt. 50, 28-32 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Suleski and D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995). [CrossRef] [PubMed]
  2. R. S. Denis, N. Passilly, M. Laroche, T. Mohammed-Brahim, and K. Aït-Ameur, “Beam-shaping longitudinal range of a binary diffractive optical element,” Appl. Opt. 45, 8136–8141(2006). [CrossRef]
  3. B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat, J. Krupnik, and D. Sadot, “Free-space optical cross-connect switch by use of electroholography,” Appl. Opt. 39, 746–758 (2000). [CrossRef]
  4. A. J. Agranat, “Optical lambda-switching at telecom wavelengths based on electroholography,” Top. Appl. Phys. 86, 133–161 (2003). [CrossRef]
  5. A. Bitman, N. Sapiens, L. Secundo, and A. J. Agranat, “Electroholographic tunable volume grating in the g44 configuration,” Opt. Lett. 31, 2849–2851 (2006). [CrossRef] [PubMed]
  6. H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008). [CrossRef]
  7. A. J. Agranat, C. E. M. de Oliveira, and G. Orr, “Dielectric electrooptic gratings in potassium lithium tantalate niobate,” J. Non-Cryst. Solids 353, 4405–4410 (2007). [CrossRef]
  8. N. Sapiens, A. Weissbrod, and A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353–355 (2009); [CrossRef] [PubMed]
  9. H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008). [CrossRef]
  10. H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008). [CrossRef]
  11. A. J. Agranat, M. Razvag, and M. Balberg, “Photorefractive hologram fixing by a 4 K cooldown to the phase transition in K1−xLixTa1−yNbyO3,” Appl. Phys. Lett. 68, 2469–2471(1996). [CrossRef]
  12. M. Ivker and A. J. Agranat, “Rapid grating compensation in iron-doped paraelectric KLTN,” in Photorefractive Effects, Materials, and Devices, G.Salamo and A.Siahmakoun, eds., Vol. 62 of OSA Trends Optics Photonics (Optical Society of America, 2001), paper 107.
  13. B. Pesach, E. Refaeli, and A. J. Agranat, “Investigation of the holographic storage capacity of paraelectric K1−xLixTa1−yNbyO3:Cu,V,” Opt. Lett. 23, 642–644 (1998). [CrossRef]
  14. A. J. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−xNbxO3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989). [CrossRef] [PubMed]
  15. Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996). [CrossRef]
  16. R. Hofmeister, A. Yariv, and A. J. Agranat, “Growth and characterization of the perovskite K1−yLiyTa1−xNbxO3:Cu,” J. Cryst. Growth. 131, 486–494 (1993). [CrossRef]
  17. X. Tong, R. Hofmeister, M. Zhang, and A. Yariv, “Fixing of volume holograms in ferroelectric K1−yLiyTa1−xNbxO3,” Opt. Lett. 21, 1860–1862 (1996). [CrossRef] [PubMed]
  18. V. Leyva, A. J. Agranat, and A. Yariv, “Fixing of a photorefractive grating in KTa1−xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556(1991). [CrossRef] [PubMed]
  19. V. Leyva, D. Engin, X. Tong, M. Tong, A. Yariv, and A. J. Agranat, “Fixing of photorefractive volume holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20, 1319–1321 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited