OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 1 — Jan. 1, 2011
  • pp: 74–81

Production of the NO photofragment in the desorption of RDX and HMX from surfaces

Jason D. White, F. Ahu Akin, Harald Oser, and David R. Crosley  »View Author Affiliations

Applied Optics, Vol. 50, Issue 1, pp. 74-81 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A promising scheme for the remote detection of nitrate-based explosives, which have low vapor pressure, involves two lasers: the first to desorb, vaporize, and photofragment the explosive molecule and the second to create laser-induced fluorescence in the NO fragment. It is desirable to use for the first a powerful 532 nm frequency-doubled Nd:YAG laser. In this study, we investigate the degree of photofragmentation into NO resulting from the irradiation of the explosives RDX and HMX coated on a variety of surfaces. The desorption step is followed by femtosecond laser ionization and time-of-flight mass spectrometry to reveal the fragments produced in the first step. We find that modest laser power of 532 nm desorbs the explosive and produces adequate amounts of NO.

© 2010 Optical Society of America

OCIS Codes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(280.1545) Remote sensing and sensors : Chemical analysis

ToC Category:
Remote Sensing and Sensors

Original Manuscript: August 9, 2010
Manuscript Accepted: October 29, 2010
Published: December 23, 2010

Jason D. White, F. Ahu Akin, Harald Oser, and David R. Crosley, "Production of the NO photofragment in the desorption of RDX and HMX from surfaces," Appl. Opt. 50, 74-81 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Ann. Rev. Phys. Chem. 49, 203–232 (1998). [CrossRef]
  2. S. Wallin, A. Pettersson, H. Őstmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009). [CrossRef] [PubMed]
  3. S. Grossman, “Determination of 2, 4, 6-trinitrotoluene contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005). [CrossRef]
  4. C. Ramos and P. J. Dagdigian, “Detection of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy,” Appl. Opt. 46, 620–627 (2007). [CrossRef] [PubMed]
  5. T. G. Slanger, W. K. Bischel, and M. J. Dyer, “Nascent NO vibrational distribution from 2485 NO2 photodissociation,” J. Chem. Phys. 79, 2231–2240 (1983). [CrossRef]
  6. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993). [CrossRef]
  7. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-Titrotoluene detection by laser-photofragmentation—laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996). [CrossRef] [PubMed]
  8. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation—fragment detection and pyrolysis laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999). [CrossRef]
  9. J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710(1999). [CrossRef]
  10. J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000). [CrossRef]
  11. J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphates,” Appl. Phys. B 71, 665–672 (2000). [CrossRef]
  12. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001). [CrossRef]
  13. D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002). [CrossRef]
  14. J. Cabalo and R. Sausa, “Detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by laser surface photofragmentation—fragment detection spectroscopy,” Appl. Spectrosc. 57, 1196–1199 (2003). [CrossRef] [PubMed]
  15. J. Cabalo and R. Sausa, “Trace detection of explosives with low vapor emissions by laser surface photofragmentation—fragment detection spectroscopy with an improved ionization probe,” Appl. Opt. 44, 1084–1091 (2005). [CrossRef] [PubMed]
  16. C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47, 5767–5776 (2008). [CrossRef]
  17. A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization, and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Proc. 116, 143–156 (1992). [CrossRef]
  18. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521–526 (1994). [CrossRef]
  19. C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994). [CrossRef]
  20. K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527(1995). [CrossRef]
  21. H. S. Kilic, K. W. D. Ledingham, C. Kosmidis, T. McCanny, R. P. Singhal, S. L. Wang, D. J. Smith, A. J. Langley, and W. Shaikh, “Multiphoton ionization and dissociation of nitromethane using femtosecond laser pulses at 375 and 750nm,” J. Phys. Chem. A 101, 817–823 (1997). [CrossRef]
  22. C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009). [CrossRef]
  23. S. M. Hankin, A. D. Tasker, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhai, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Isaac, and S. Jamison, “Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules,” Rapid Commun. Mass Spectrom. 16, 111–116(2002). [CrossRef]
  24. B. V. Pond, C. Mullen, J. Suarez, K. Briggs, S. E. Young, M. J. Coggiola, D. R. Crosley, and H. Oser, “Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry,” Appl. Phys. B 86, 735–742(2006). [CrossRef]
  25. C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, “Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry,” Anal. Chem. 78, 3807–3814 (2006). [CrossRef] [PubMed]
  26. NIST Mass Spec Data Center, S. E. Stein director, “Mass spectra,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J.Linstrom and W.G.Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD, 20899, http://webbook.nist.gov.
  27. C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375nm,” J. Phys. Chem. A 101, 2264–2270(1997). [CrossRef]
  28. A. Roos, C. G. Ribbing, and B. Karlsson, “Stainless steel solar mirrors—a material feasibility study,” Sol. Energy Mater. 18, 233–240 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited