OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1425–1433

Sparsity-motivated automatic target recognition

Vishal M. Patel, Nasser M. Nasrabadi, and Rama Chellappa  »View Author Affiliations


Applied Optics, Vol. 50, Issue 10, pp. 1425-1433 (2011)
http://dx.doi.org/10.1364/AO.50.001425


View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an automatic target recognition algorithm using the recently developed theory of sparse representations and compressive sensing. We show how sparsity can be helpful for efficient utilization of data for target recognition. We verify the efficacy of the proposed algorithm in terms of the recognition rate and confusion matrices on the well known Comanche (Boeing–Sikorsky, USA) forward-looking IR data set consisting of ten different military targets at different orientations.

© 2011 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.5010) Image processing : Pattern recognition
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

History
Original Manuscript: October 20, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: January 29, 2011
Published: March 29, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Vishal M. Patel, Nasser M. Nasrabadi, and Rama Chellappa, "Sparsity-motivated automatic target recognition," Appl. Opt. 50, 1425-1433 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-10-1425


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Sadjadi, “Infrared target detection with probability density functions of wavelet transform subbands,” Appl. Opt. 43, 315–323 (2004). [CrossRef] [PubMed]
  2. L. Wang, S. Z. Der, and N. M. Nasrabadi, “Automatic target recognition using a feature-decomposition and data-decomposition modular neural network,” IEEE Trans. Image Process. 7, 1113–1121 (1998). [CrossRef]
  3. L. A. Chan and N. M. Nasrabadi, “Application of wavelet-based vector quantization in target recognition,” Int. J. Art. Intel. Tools 6, 165–178 (1997). [CrossRef]
  4. P. Bharadwaj and L. Carin, “Infrared image classification using hidden Markov trees,” IEEE Trans. Pattern Anal. Mach. Intel. 24, 1394–1397 (2002). [CrossRef]
  5. B. Li, R. Chellappa, Q. Zheng, S. Der, N. M. Nasrabadi, L. Chan, and L. Wang, “Experimental evaluation of forward-looking IR data set automatic target recognition approaches—a comparative study,” Comput. Vision Image Underst. 84, 5–24 (2001). [CrossRef]
  6. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intel. 31, 210–227 (2009). [CrossRef]
  7. V. M. Patel, N. M. Nasrabadi, and R. Chellappa, “Sparsity-Inspired automatic target recognition,” Proc. SPIE 7696, 76960Q (2010). [CrossRef]
  8. D. L. Donoho and X. Huo, “Uncertainty principle and ideal atomic decomposition,” IEEE Trans. Inf. Theory 47, 2845–2862 (2001). [CrossRef]
  9. D. L. Donoho and M. Elad, “On the stability of the basis pursuit in the presence of noise,” EURASIP J. Adv. Signal Processing 86, 511–532 (2006). [CrossRef]
  10. E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59, 1207–1223 (2006). [CrossRef]
  11. H. Rauhut, K. Schnass, and P. Vandergheynst, “Compressed sensing and redundant dictionaries,” IEEE Trans. Inf. Theory 54, 2210–2219 (2008). [CrossRef]
  12. R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24, 118–121 (2007). [CrossRef]
  13. S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 33–61 (1998). [CrossRef]
  14. ∥x∥0 returns the number of nonzero elements of x.
  15. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53, 4655–4666 (2007). [CrossRef]
  16. R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B. Methodol. 58, 267–288(1996).
  17. E. van der Berg and M. P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM J. Sci. Comput. 31, 890–912 (2008). [CrossRef]
  18. H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J. R. Stat. Soc. B 67, 301–320(2005). [CrossRef]
  19. Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured union of subspaces,” IEEE Trans. Inf. Theory 55, 5302–5316 (2009). [CrossRef]
  20. Y. C. Eldar, P. Kuppinger, and H. B. Bolcskei, “Block-sparse signals: uncertainty relations and efficient recovery,” IEEE Trans. Signal Process. 58, 3042–3054 (2010). [CrossRef]
  21. M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” J. R. Stat. Soc. B 68, 49–67(2006). [CrossRef]
  22. L. Meier, S. van der Geer, and P. Buhlman, “The group lasso for logistic regression,” J. R. Stat. Soc. B 70, 53–71 (2008). [CrossRef]
  23. M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of block-sparse signals with an optimal number of measurements,” IEEE Trans. Signal Process. 57, 3075–3085(2009). [CrossRef]
  24. Given C classes, the confusion matrix is of size C×C, whose diagonal entries are the number of targets that are correctly classified, while the off-diagonal entries are the number of misclassifications.
  25. Y. Tsaig and D. L. Donoho, “Extensions of compressed sensing,” Signal Process. 86, 549–571 (2006). [CrossRef]
  26. E. Candès and J. K. Romberg, “Signal recovery from random projections,” Proc. SPIE 5674, 76–86 (2005). [CrossRef]
  27. Exact recovery of sparse coefficients also depends on the matrix GA. That is, GA must satisfy certain properties such as the mutual coherence property and the restricted isometry property. See for more details.
  28. P. J. Phillips, “Matching pursuit filters applied to face identification,” IEEE Trans. Image Process. 7, 1150–1164 (1998). [CrossRef]
  29. D. Needell and J. A. Tropp, “CoSaMP: iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26, 301–321 (2009). [CrossRef]
  30. F. Rodriguez and G. Sapiro, “Sparse representations for image classification: learning discriminative and reconstructive nonparametric dictionaries,” Tech. Report (University of Minnesota, Dec. 2007).
  31. P. Sprechmann and G. Sapiro, “Dictionary learning and sparse coding for unsupervised clustering,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2010), pp. 2042–2045. [CrossRef]
  32. F. M. Caimi, D. M. Kocak, F. Dalgleish, and J. Watson, “Underwater imaging and optics: recent advances,” Oceans 2008 2008, 1–9 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited