OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 12 — Apr. 20, 2011
  • pp: 1673–1681

Designs of multipass optical configurations based on the use of a cube corner retroreflector in the interferometer

Ruyi Wei, Xuemin Zhang, Jinsong Zhou, and Sizhong Zhou  »View Author Affiliations


Applied Optics, Vol. 50, Issue 12, pp. 1673-1681 (2011)
http://dx.doi.org/10.1364/AO.50.001673


View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe designs of the multipass optical configurations of an interferometer with high spectral resolution with respect to 6, 12, and 24 times more optical passes than the conventional Michelson interferometer. In each design, a movable cube corner retroreflector is combined with a folding reflector group (FRG) as the interferometer’s moving combination to implement the multipass optical configuration with the characteristic of surface division. Analyses reveal that when there are 12 or more optical passes, the net effect of the ray’s angular deviation of the entire moving combination amounts to only the alignment error of one of the reflectors in the FRG, demonstrating the self-aligning property of the interferometer.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Interferometry

History
Original Manuscript: October 12, 2010
Revised Manuscript: January 3, 2011
Manuscript Accepted: February 16, 2011
Published: April 12, 2011

Citation
Ruyi Wei, Xuemin Zhang, Jinsong Zhou, and Sizhong Zhou, "Designs of multipass optical configurations based on the use of a cube corner retroreflector in the interferometer," Appl. Opt. 50, 1673-1681 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-12-1673


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kauppinen, “Working resolution of 0.010 cm−1 between 20 cm−1 and 1200 cm−1 by a Fourier spectrometer,” Appl. Opt. 18, 1788–1796 (1979). [CrossRef] [PubMed]
  2. J. Ahn, J. A. Kim, C. S. Kang, J. W. Kim, and S. Kim, “High resolution interferometer with multiple-pass optical configuration,” Opt. Express 17, 21042–21049 (2009). [CrossRef] [PubMed]
  3. B. Carli, M. Carlotti, F. Mencaraglia, and E. Rossi, “Far-infrared high-resolution Fourier transform spectrometer,” Appl. Opt. 26, 3818–3822 (1987). [CrossRef] [PubMed]
  4. T. Hatsuzawa, Y. Tanimura, K. Toyoda, M. Nara, S. Toyonaga, S.-y. Hara, H. Iwasaki, and K. Kondou, “A compact laser interferometer with a piezodriven scanner for metrological measurements in regular SEMs,” Rev. Sci. Instrum. 65, 2510–2513 (1994). [CrossRef]
  5. A. L. Vitushkin and L. F. Vitushkin, “Design of a multipass optical cell based on the use of shifted corner cubes and right-angle prisms,” Appl. Opt. 37, 162–165 (1998). [CrossRef]
  6. M. Pisani, “Multiple reflection Michelson interferometer with picometer resolution,” Opt. Express 16, 21558–21563 (2008). [CrossRef] [PubMed]
  7. E. R. Peck, “A new principle in interferometer design,” J. Opt. Soc. Am. 38, 66–66 (1948). [CrossRef] [PubMed]
  8. E. R. Peck, “Theory of the corner-cube interferometer,” J. Opt. Soc. Am. 38, 1015–1024 (1948). [CrossRef] [PubMed]
  9. M. V. R. K. Murty, “Modification of Michelson interferometer using only one cube-corner prism,” J. Opt. Soc. Am. 50, 83–84(1960). [CrossRef]
  10. G. Taurand, J. Genest, M. Cadotte, M. Gibeault, and E. Lanoue, “Parasitic diffuse reflection in a Fourier transform spectrometer yielding subharmonic ghosts and line-shape distortion,” Appl. Opt. 46, 533–537 (2007). [CrossRef] [PubMed]
  11. R. Y. Wei, J. F. Lei, K. Yang, B. S. Yin, and L. B. Zeng, “Analysis on corner cube retroreflector in FT-IR spectrometer,” Opt. Instrum. 29, 69–75 (2007).
  12. J. Kauppinen and V.-M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30, 2575–2578 (1991). [CrossRef] [PubMed]
  13. X. Zhu, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32 (2002). [CrossRef]
  14. Y. K. Hong and R. R. A. Syms, “Dynamic response modeling of MEMS micromirror corner cube reflectors with angular vertical combdrives,” J. Lightwave Technol. 25, 472–480 (2007). [CrossRef]
  15. J. Liu and R. M. A. Azzam, “Polarization properties of corner-cube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553–1559 (1997). [CrossRef] [PubMed]
  16. E. R. Peck, “Polarization properties of corner reflectors and cavities,” J. Opt. Soc. Am. 52, 253–257 (1962). [CrossRef]
  17. B. C. Park, T. B. Eom, and M. S. Chung, “Polarization properties of cube-corner retroreflectors and their effects on signal strength and nonlinearity in heterodyne interferometers,” Appl. Opt. 35, 4372–4380 (1996). [CrossRef] [PubMed]
  18. S. E. Segre and V. Zanza, “Mueller calculus of polarization change in the cube-corner retroreflector,” J. Opt. Soc. Am. A 20, 1804–1811 (2003). [CrossRef]
  19. J. P. R. Yoder, “Study of light deviation errors in triple mirrors and tetrahedral prisms,” J. Opt. Soc. Am. 48, 496–499 (1958). [CrossRef]
  20. D. A. Thomas and J. C. Wyant, “Determination of the dihedral angle errors of a corner cube from its Twyman–Green interferogram,” J. Opt. Soc. Am. 67, 467–472 (1977). [CrossRef]
  21. C. Ai and K. L. Smith, “Accurate measurement of the dihedral angle of a corner cube,” Appl. Opt. 31, 519–527 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited