OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 12 — Apr. 20, 2011
  • pp: 1765–1769

Noninterferometric phase-contrast images obtained with incoherent x-ray sources

Alessandro Olivo, Konstantin Ignatyev, Peter R. T. Munro, and Robert D. Speller  »View Author Affiliations

Applied Optics, Vol. 50, Issue 12, pp. 1765-1769 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on what are believed to be the first full-scale images obtained with the coded aperture concept, which uses conventional x-ray sources without the need to collimate/aperture their output. We discuss the differences in the underpinning physical principles with respect to other methods, and explain why these might lead to a more efficient use of the source. In particular, we discuss how the evaluation of the first imaging system provided promising indications on the method’s potential to detect details invisible to conventional absorption methods, use an increased average x-ray energy, and reduce exposure times—all important aspects with regards to real-world implementations.

© 2011 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(340.7430) X-ray optics : X-ray coded apertures
(340.7440) X-ray optics : X-ray imaging

ToC Category:
Diffraction and Gratings

Original Manuscript: January 4, 2011
Revised Manuscript: February 9, 2011
Manuscript Accepted: February 11, 2011
Published: April 18, 2011

Alessandro Olivo, Konstantin Ignatyev, Peter R. T. Munro, and Robert D. Speller, "Noninterferometric phase-contrast images obtained with incoherent x-ray sources," Appl. Opt. 50, 1765-1769 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995). [CrossRef]
  2. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5892 (1995). [CrossRef]
  3. R. Lewis, “Medical phase-contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573–3583(2004). [CrossRef] [PubMed]
  4. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258–261 (2006). [CrossRef]
  5. A. Olivo and R. Speller, “A coded-aperture approach allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007). [CrossRef]
  6. A. Olivo, D. Chana, and R. Speller, “A preliminary investigation of the potential of phase contrast x-ray imaging in the field of homeland security,” J. Phys. D 41, 225503 (2008). [CrossRef]
  7. A. Olivo and R. Speller, “Modelling of a novel x-ray phase contrast imaging technique based on coded apertures,” Phys. Med. Biol. 52, 6555–6573 (2007). [CrossRef] [PubMed]
  8. M. Born and E. Wolf, Principles of Optics, 6th ed.(Pergamon, 1980).
  9. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996). [CrossRef] [PubMed]
  10. J. F. Clauser, “Ultrahigh resolution interferometric x-ray imaging,” U.S. patent 5812629 (22 September 1998).
  11. A. Momose, A. W. Yashiro, T. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262(2006). [CrossRef]
  12. A. Olivo and R. Speller, “Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of an x-ray imaging system,” Phys. Med. Biol. 51, 3015–3030 (2006). [CrossRef] [PubMed]
  13. A. Peterzol, A. Olivo, L. Rigon, S. Pani, and D. Dreossi, “The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging,” Med. Phys. 32, 3617–3627 (2005). [CrossRef]
  14. V. N. Ingal and E. A. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D 28, 2314–2317 (1995). [CrossRef]
  15. D. Chapman, W. Thomlinson, R. E. Johnson, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997). [CrossRef] [PubMed]
  16. D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kräusslich, O. Wehrhan, I. Uschmann, and E. Förster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007). [CrossRef]
  17. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28, 1610–1619 (2001). [CrossRef] [PubMed]
  18. A. Olivo and R. Speller, “Image formation principles in coded-aperture based x-ray phase contrast imaging,” Phys. Med. Biol. 53, 6461–6474 (2008). [CrossRef] [PubMed]
  19. P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems,” Opt. Express 18, 4103–4117 (2010). [CrossRef] [PubMed]
  20. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Design and realization of a coded-aperture based x-ray phase contrast imaging for homeland security applications,” Nucl. Instrum. Methods Phys. Res. A 610, 604–614 (2009). [CrossRef]
  21. J. C. Buckland-Wright, “A new high-definition microfocal x-ray unit,” Br. J. Radiol. 62, 201–208 (1989). [CrossRef] [PubMed]
  22. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008). [CrossRef] [PubMed]
  23. A. Momose, W. Yashiro, H. Kuwabara, and K. Kawabata, “Grating-based x-ray phase imaging using multiline x-ray source,” Jpn. J. Appl. Phys. 48, 076512 (2009). [CrossRef]
  24. X. Wu and H. Liu, “Clarification of aspects in in-line phase-sensitive x-ray imaging,” Med. Phys. 34, 737–743 (2007). [CrossRef] [PubMed]
  25. A. Olivo, S. E. Bohndiek, J. A. Griffiths, A. Konstantinidis, and R. D. Speller, “A non-free-space propagation x-ray phase contrast imaging method sensitive to phase effects in two directions simultaneously,” Appl. Phys. Lett. 94, 044108 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited