OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 12 — Apr. 20, 2011
  • pp: 1770–1778

Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy

Christopher J. Kliewer, Yi Gao, Thomas Seeger, Brian D. Patterson, Roger L. Farrow, and Thomas B. Settersten  »View Author Affiliations


Applied Optics, Vol. 50, Issue 12, pp. 1770-1778 (2011)
http://dx.doi.org/10.1364/AO.50.001770


View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employ picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy (CARS) in a one-dimensional (1D) imaging configuration. Temperature and O 2 : N 2 concentration ratios are measured along a 1D line of up to 12 mm in length. The images consist of up to 330 individual rotational CARS (RCARS) spectra, corresponding to 330 spatially resolved volume elements in the probe volume. Signal levels are sufficient for the collection of single-laser-pulse images at temperatures of up to approximately 1200 K and shot-averaged images at flame temperatures, demonstrated at 2100 K . The precision of picosecond pure-rotational 1D imaging CARS is assessed by acquiring a series of 100 single-laser-pulse images in a heated flow of N 2 from 410 K 1200 K and evaluating a single volume element for temperature in each image. Accuracy is demonstrated by comparing temperatures from the evaluated averaged spectra to thermocouple readings in the heated flow. Deviations from the thermocouple of < 30 K in the evaluated temperature were found at up to 1205 K . Accuracy and single-shot precision are compared to those reported for single-point nanosecond dual-broadband pure-RCARS and nanosecond 1D vibrational CARS.

© 2011 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 27, 2010
Revised Manuscript: February 17, 2011
Manuscript Accepted: February 21, 2011
Published: April 18, 2011

Citation
Christopher J. Kliewer, Yi Gao, Thomas Seeger, Brian D. Patterson, Roger L. Farrow, and Thomas B. Settersten, "Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy," Appl. Opt. 50, 1770-1778 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-12-1770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).
  2. M. Aldén, P.-E. Bengtsson, and H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986). [CrossRef] [PubMed]
  3. A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986). [CrossRef] [PubMed]
  4. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996). [CrossRef] [PubMed]
  5. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” Proc. Combust. Inst. 32, 847–854 (2009). [CrossRef]
  6. M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646–3651 (2006). [CrossRef] [PubMed]
  7. J. Shirley, R. Hall, J. Verdieck, and A. Eckbreth, “New directions in CARS diagnostics for combustion,” in Proceedings of the Fifteenth American Institute of Aeronautics and Astronautics Thermophysics Conference (1979), paper 80–1542, pp. 1–13.
  8. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, and R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984). [CrossRef] [PubMed]
  9. R. P. Lucht, “Three-laser coherent anti-Stokes Raman-scattering measurements of two species,” Opt. Lett. 12, 78–80(1987). [CrossRef] [PubMed]
  10. S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009). [CrossRef]
  11. A. C. Eckbreth, “BOXCARS—crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978). [CrossRef]
  12. S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008). [CrossRef] [PubMed]
  13. D. V. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, “Spatially resolved coherent anti-stokes Raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169(1979). [CrossRef] [PubMed]
  14. H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and LiquidsA.Weber, ed. (Springer-Verlag, 1979), pp. 123–166. [CrossRef]
  15. J. B. Snow, J. Zheng, and R. K. Chang, “Spatially and spectrally resolved multipoint coherent anti-Stokes Raman scattering from N2 and O2 flows,” Opt. Lett. 8, 599–601(1983). [CrossRef] [PubMed]
  16. J. Stufflebeam and A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Nonintrusive Combustion Diagnostics, K.Kuo and T.Parr, eds. (Begell House, 1994), pp. 115–131.
  17. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “One-dimensional vibrational coherent anti-Stokes Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534(1996). [CrossRef] [PubMed]
  18. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements,” Appl. Opt. 36, 3253–3259 (1997). [CrossRef] [PubMed]
  19. J. Bood, C. Brackmann, P.-E. Bengtsson, and M. Aldén, “Multipoint temperature and oxygen-concentration measurements using rotational coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 25, 1535–1537 (2000). [CrossRef]
  20. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224(2005). [CrossRef] [PubMed]
  21. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005). [CrossRef]
  22. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007). [CrossRef] [PubMed]
  23. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009). [CrossRef] [PubMed]
  24. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010). [CrossRef] [PubMed]
  25. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010). [CrossRef]
  26. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011). [CrossRef]
  27. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010). [CrossRef]
  28. T. Seeger, F. Beyrau, A. Bräuer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003). [CrossRef]
  29. E. Magens, “Nutzung von Rotations-CARS zur Temperatur-und Konzentrations-messung in Flammen,” Ph.D. thesis (Universität Erlangen-Nürnberg, 1992).
  30. M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Chem. Phys. 91, 41–46 (1987). [CrossRef]
  31. L. A. Rahn and R. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986). [CrossRef]
  32. R. Kee, F. Rupley, E. Meeks, and J. Miller, “CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Tech. Rep. SAND96-8216 (Sandia National Laboratories, 1996).
  33. “Chemical–kinetic mechanisms for combustion applications,” , Center for Energy Research (Combustion Division), University of California at San Diego, http://maeweb.ucsd.edu/combustion/.
  34. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432(2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited