OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 13 — May. 1, 2011
  • pp: 1915–1924

Extremely sensitive detection of NO 2 employing off-axis integrated cavity output spectroscopy coupled with multiple-line integrated absorption spectroscopy

Gottipaty N. Rao and Andreas Karpf  »View Author Affiliations


Applied Optics, Vol. 50, Issue 13, pp. 1915-1924 (2011)
http://dx.doi.org/10.1364/AO.50.001915


View Full Text Article

Enhanced HTML    Acrobat PDF (458 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development of a new sensor for NO 2 with ultrahigh sensitivity of detection. This has been accomplished by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several kilometers in a small volume cell) with multiple-line integrated absorption spectroscopy (MLIAS) (where we integrate the absorption spectra over a large number of rotational–vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity quantum cascade laser operating in the 1601 1670 cm 1 range and a high-finesse optical cavity, the absorption spectra of NO 2 over 100 transitions in the R band have been recorded. From the observed linear relationship between the integrated absorption versus concentration of NO 2 and the standard deviation of the integrated absorption signal, we report an effective sensitivity of detection of approximately 28 ppt (parts in 10 12 ) for NO 2 . To the best of our knowledge, this is among the most sensitive levels of detection of NO 2 to date.

© 2011 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 24, 2010
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 16, 2011
Published: April 28, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Gottipaty N. Rao and Andreas Karpf, "Extremely sensitive detection of NO2 employing off-axis integrated cavity output spectroscopy coupled with multiple-line integrated absorption spectroscopy," Appl. Opt. 50, 1915-1924 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-13-1915


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Primary national ambient air quality standards for nitrogen dioxide; final rule,” Federal Register 75(26), 6474–6537(9 February 2010).
  2. United States Environmental Protection Agency, “National air quality status and trends through 2007,” EPA-454/R-08-006 (United States Environmental Protection Agency, 2008).
  3. J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009). [CrossRef]
  4. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006). [CrossRef]
  5. G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).
  6. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990). [CrossRef] [PubMed]
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002). [CrossRef]
  8. F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).
  9. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  10. G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50, A100–A115 (2011). [CrossRef] [PubMed]
  11. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349(1999). [CrossRef]
  12. R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  13. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910(2001). [CrossRef]
  14. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  15. G. N. Rao and A. Karpf, “High sensitivity detection of NO2 employing cavity ring-down spectroscopy and an external cavity continuously tunable quantum cascade laser,” Appl. Opt. 49, 4906–4914 (2010). [CrossRef] [PubMed]
  16. A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009). [CrossRef] [PubMed]
  17. A. Karpf and G. N. Rao, “Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines,” Appl. Opt. 49, 1406–1413 (2010). [CrossRef] [PubMed]
  18. J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.
  19. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006). [CrossRef]
  20. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005). [CrossRef]
  21. K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33. [CrossRef]
  22. J. M. Hollas, High Resolution Spectroscopy, 2nd ed. (Wiley, 1998).
  23. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005). [CrossRef]
  24. C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Ocean. Opt. 18, 685–695 (2005).
  25. National Aeronautic and Space Administration, “Earth fact sheet—terrestrial atmosphere,” http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html.
  26. E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85, 257–263(2006). [CrossRef]
  27. E. Burkhard and J. Schwab, “Ambient gaseous ammonia: evaluation of continuous measurement methods suitable for routine deployment—final report,” (New York State Energy Research and Development Authority, 2008).
  28. National Oceanic and Atmospheric Administration, “Average relative humidity,” http://lwf.ncdc.noaa.gov/oa/climate/online/ccd/avgrh.html.
  29. F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser,” Appl. Opt. 46, 907–915 (2007). [CrossRef] [PubMed]
  30. M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited