OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 14 — May. 10, 2011
  • pp: 2037–2048

Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters

Thomas C. Grenfell, Sarah J. Doherty, Antony D. Clarke, and Stephen G. Warren  »View Author Affiliations


Applied Optics, Vol. 50, Issue 14, pp. 2037-2048 (2011)
http://dx.doi.org/10.1364/AO.50.002037


View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light absorption by particulate impurities in snow and ice can affect the surface albedo and is important for the climate. The absorption properties of these particles can be determined by collecting and melting snow samples and extracting the particulate material by filtration of the meltwater. This paper describes the optical design and testing of a new instrument to measure the absorption spectrum from 400 to 750 nm wavelength of the particles collected on filters using an “integrating-sandwich” configuration. The measured absorption is shown to be unaffected by scattering of light from the deposited particulates. A set of calibration standards is used to derive an upper limit for the concentration of black carbon (BC) in the snow. The wavelength dependence of the absorption spectra from 450 to 600 nm is used to calculate an absorption Å ngstrom exponent for the aerosol. This exponent is used to estimate the actual BC concentration in the snow samples as well as the relative contributions of BC and non-BC constituents to the absorption of solar radiation integrated over the wavelength band 300 to 750 nm .

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.0300) Spectroscopy : Spectroscopy
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 3, 2010
Revised Manuscript: January 26, 2011
Manuscript Accepted: January 27, 2011
Published: May 5, 2011

Citation
Thomas C. Grenfell, Sarah J. Doherty, Antony D. Clarke, and Stephen G. Warren, "Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters," Appl. Opt. 50, 2037-2048 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-14-2037


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. C. Bond, D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont, “A technology-based global inventory of black and organic carbon emissions from combustion,” J. Geophys. Res. 109, D14203 (2004). [CrossRef]
  2. T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006). [CrossRef]
  3. A. D. Clarke and K. J. Noone, “Soot in the Arctic snowpack: a cause for perturbations in radiative transfer,” Atmos. Environ. 19, 2045–2053 (1985). [CrossRef]
  4. J. Hansen and L. Nazarenko, “Soot climate forcing via snow and ice albedos,” Proc. Natl. Acad. Sci. USA 101, 423–428(2004). [CrossRef]
  5. J. Hansen, M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G. A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley, N. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, and S. Zhang, “Efficacy of climate forcings,” J. Geophys. Res. 110, D18104 (2005). [CrossRef]
  6. M. G. Flanner, C. S. Zender, J. T. Randerson, and P. J. Rasch, “Present-day climate forcing and response from black carbon in snow,” J. Geophys. Res. 112, D11202 (2007). [CrossRef]
  7. P. Boparai, J. Lee, and T. C. Bond, “Revisiting thermal-optical analyses of carbonaceous aerosol using a physical model,” Aerosol Sci. Technol. 42, 930–948 (2008). [CrossRef]
  8. J. G. Slowik, E. S. Cross, J.-H. Han, P. Davidovits, T. B. Onasch, J. T. Jayne, L. R. Williams, M. R. Canagaratna, D. R. Worsnop, R. K. Chakrabarty, H. Moosmüller, W. P. Arnott, J. P. Schwartz, R.-S. Gao, D. W. Fahey, G. L. Kok, and A. Petzold, “An inter-comparison of instruments measuring black carbon content of soot particles,” Aerosol Sci. Technol. 41, 295–314 (2007). [CrossRef]
  9. E. S. Cross, T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. Schwartz, R. Spackman, D. W. Fahey, A. Sedlacek, A. Trimborn, J. T. Jayne, A. Freedman, L. R. Williams, N. L. Ng, C. Mazzoleni, M. Dubey, B. Brem, G. Kok, R. Subramanian, S. Freitag, A. Clarke, D. Thornhill, L. Marr, C. E. Kolb, D. R. Worsnop, and P. Davidovits, “Soot particle studies—instrument inter-comparison—project overview,” Aerosol Sci. Technol. 44, 592–611 (2010). [CrossRef]
  10. G. S. W. Hagler, M. H. Bergin, E. A. Smith, and J. E. Dibb, “A summer time series of particulate carbon in the air and snow at Summit, Greenland,” J. Geophys. Res. 112, D21309 (2007). [CrossRef]
  11. S. Forsström, J. Ström, C. A. Pedersen, E. Isaksson, and S. Gerland, “Elemental carbon distribution in Svalbard snow,” J. Geophys. Res. 114, D19112 (2009). [CrossRef]
  12. J. R. McConnell, R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. W. Kahl, “20th century industrial black carbon emissions altered Arctic climate forcing,” Science 317, 1381–1384 (2007). [CrossRef] [PubMed]
  13. T. C. Bond, T. L. Anderson, and D. Campbell, “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols,” Aerosol Sci. Technol. 30, 582–600(1999). [CrossRef]
  14. T. C. Grenfell, D. K. Perovich, and J. A. Ogren, “Spectral albedos of an alpine snowpack,” Cold Reg. Sci. Technol. 4, 121–127 (1981). [CrossRef]
  15. T. C. Grenfell, B. Light, and M. Sturm, “Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment,” J. Geophys. Res. 107, 8032–8038(2002). [CrossRef]
  16. D. K. Perovich, T. C. Grenfell, B. Light, B. C. Elder, J. Harbeck, C. Polashenski, W. B. Tucker III, and C. Stelmach, “Transpolar observations of the morphological properties of Arctic sea ice,” J. Geophys. Res. 114, C00A04 (2009). [CrossRef]
  17. A. D. Clarke, “Effects of filter internal reflection coefficient on light absorption measurements made using the integrating plate method,” Appl. Opt. 21, 3021–3031 (1982). [CrossRef] [PubMed]
  18. A. D. Clarke, “Integrating sandwich: a new method of measurement of the light absorption coefficient for atmospheric particles,” Appl. Opt. 21, 3011–3020 (1982). [CrossRef] [PubMed]
  19. A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, “Aerosol light absorption measurement techniques: analysis and intercomparisons,” Atmosph. Environ. 21, 1455–1465 (1987). [CrossRef]
  20. S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. II. snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734–2745 (1980). [CrossRef]
  21. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  22. A. A. Gershun, “Presentation of the fundamental ideas of the theory of a radiation field (vector methods of photometric calculation),” Izvestiya Akad. Nauk SSSR , N 3, 417–430 (1936) [in Russian, Proc. Acad. Sciences USSR].
  23. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999). [CrossRef]
  24. C. D. Mobley, Light and Water, Radiative Transfer in Natural Waters (Academic, 1994).
  25. A. D. Clarke, C. McNaughton, V. Kapustin, Y. Shinozuka, S. Howell, J. Dibb, J. Zhou, B. Anderson, V. Brekhovskikh, H. Turner, and M. Pinkerton, “Biomass burning and pollution aerosol over North America: organic components and their influence on spectral optical properties and humidification response,” J. Geophys. Res. 112, D12S18 (2007). [CrossRef]
  26. O. L. Hadley, C. E. Corrigan, and T. W. Kirchstetter, “Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon,” Environ. Sci. Tech. 42, 8459–8464 (2008). [CrossRef]
  27. T. C. Bond, “Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion,” Geophys. Res. Lett. 28, 4075–4078 (2001). [CrossRef]
  28. R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosol,” Atmos. Chem. Phys. 7, 5937–5943 (2007). [CrossRef]
  29. P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livington, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10, 1155–1169 (2010). [CrossRef]
  30. M. O. Andreae and A. Gelencsér, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6, 3131–3148 (2006). [CrossRef]
  31. H. Sun, L. Biedermann, and T. C. Bond, “Color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol,” Geophys. Res. Lett. 34, L17813(2007). [CrossRef]
  32. T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, D21208 (2004). [CrossRef]
  33. E. M. Patterson, D. A. Gillette, and B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosols,” J. Geophys. Res. 82, 3153–3160 (1977). [CrossRef]
  34. T. C. Grenfell and D. K. Perovich, “Incident spectral irradiance in the Arctic Basin during the summer and fall,” J. Geophys. Res. 113, D12117 (2008). [CrossRef]
  35. P. Ricchiazzi, S. Yang, C. Gautier, and D. Sowle, “SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 79, 2101–2114 (1998). [CrossRef]
  36. Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, E. J. Dunlea, G. C. Roberts, J. M. Tomlinson, D. R. Collins, S. G. Howell, V. N. Kapustin, C. S. McNaughton, and J. Zhou, “Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B,” Atmos. Chem. Phys. 9, 6727–6742(2009). [CrossRef]
  37. D. A. Hegg, S. G. Warren, T. C. Grenfell, S. J. Doherty, and A. D. Clarke, “Sources of light-absorbing aerosol in arctic snow and their seasonal variation,” Atmos. Chem. Phys. 10, 10923–10938 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited