OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2326–2333

Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light

Georgi B. Hadjichristov, Yordan G. Marinov, and Alexander G. Petrov  »View Author Affiliations

Applied Optics, Vol. 50, Issue 16, pp. 2326-2333 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10 25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He–Ne laser ( λ = 633 nm ), an electrically commanded phase shift as large as π / 2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.

© 2011 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(230.3720) Optical devices : Liquid-crystal devices
(230.4110) Optical devices : Modulators

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 12, 2011
Revised Manuscript: March 24, 2011
Manuscript Accepted: March 24, 2011
Published: May 20, 2011

Georgi B. Hadjichristov, Yordan G. Marinov, and Alexander G. Petrov, "Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light," Appl. Opt. 50, 2326-2333 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Doane, “Polymer dispersed liquid crystal displays,” in Liquid Crystals: Applications and Uses, B.Bahadur, ed. (World Scientific, 1990), Vol.  1, pp. 361–396.
  2. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).
  3. G. P. Crawford and S. Zumer, “Historical perspective of liquid crystals confined to curved geometries: from freely suspended droplets to flat-panel displays,” in Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, G.P.Crawford and S.Zumer, eds. (Taylor and Francis, 1996), pp. 1–20.
  4. F. Bloisi and L. Vicari, “Polymer dispersed liquid crystals,” in Optical Applications of Liquid Crystals (Series in Optics and Optoelectronics), L.Vicari, ed. (Institute of Physics, 2003), pp. 148–200.
  5. P. Drzaic, “Putting liquid crystal droplets to work: a short history of polymer dispersed liquid crystals,” Liq. Cryst. 33, 1281–1285 (2006). [CrossRef]
  6. J. W. Doane, “PDLC shutters: where has this technology gone?,” Liq. Cryst. 33, 1313–1314 (2006). [CrossRef]
  7. J. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009). [CrossRef]
  8. S. T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).
  9. J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991). [CrossRef]
  10. J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992). [CrossRef]
  11. L. McKenna, L. S. Miller, and I. R. Peterson, “Polymer dispersed liquid crystal films for modulating infra-red radiation,” Polymer 45, 6977–6984 (2004). [CrossRef]
  12. F. Bloisi and L. Vicari, “Laser beam manipulation by composite material electro-optic devices,” Opt. Lasers Eng. 39, 389–408 (2003). [CrossRef]
  13. F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993). [CrossRef]
  14. L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997). [CrossRef]
  15. O. Levy, “Electro-optical phase shift in polymer dispersed liquid crystals,” Eur. Phys. J. E 3, 11–20 (2000). [CrossRef]
  16. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005). [CrossRef]
  17. G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Linear size gradient single layers of polymer-dispersed liquid crystal micrometer-sized droplets for diffractive optics,” Opt. Mater. 31, 1578–1585 (2009). [CrossRef]
  18. G. B. Hadjichristov, Y. Marinov, and A. G. Petrov, “Single-layered PDLC for diffractive optics,” Mol. Cryst. Liq. Cryst. 525, 128–139 (2010). [CrossRef]
  19. Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered PDLC films for electrically variable laser light reflection application,” Opt. Lasers Eng. 48, 1161–1165 (2010). [CrossRef]
  20. Y. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Controllable-gradient microscale PDLC electro-optical materials formed by nanosecond laser photopolymerization,” J. Optoelectron. Adv. Mater. 9, 417–419 (2007).
  21. D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990). [CrossRef]
  22. P. S. Drzaic and A. Muller, “Droplet shape and reorientation fields in nematic droplet/polymer films,” Liq. Cryst. 5, 1467–1475 (1989). [CrossRef]
  23. Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered microscale linear-gradient PDLC material for electro-optics,” Cryst. Res. Technol. 44, 870–878 (2009). [CrossRef]
  24. S. J. Klosowicz and M. Aleksander, “Effect of polymer-dispersed liquid crystal morphology on its optical performance,” Opto-Electron. Rev. 12, 305–312 (2004).
  25. A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000). [CrossRef]
  26. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  27. D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996). [CrossRef]
  28. V. A. Loiko and A. A. Miskevich, “Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients,” Appl. Opt. 44, 3759–3768 (2005). [CrossRef] [PubMed]
  29. V. P. Dick and V. A. Loiko, “Model for coherent transmittance calculation for polymer dispersed liquid crystal films,” Liq. Cryst. 28, 1193–1198 (2001). [CrossRef]
  30. K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: Temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996). [CrossRef]
  31. P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988). [CrossRef]
  32. B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1485 (1989). [CrossRef]
  33. D. Coates, “Normal and reverse mode polymer dispersed liquid crystal devices,” Displays 14, 94–103 (1993). [CrossRef]
  34. S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997). [CrossRef]
  35. K. R. Amundson and M. Srinivasaro, “Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation,” Phys. Rev. E 58, R1211–R1214 (1998). [CrossRef]
  36. R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999). [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 695.
  38. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002). [CrossRef]
  39. P. J. W. Hands, A. K. Kirby, and G. D. Love, “Phase modulation with polymer-dispersed liquid crystals,” Proc. SPIE 5894, 58940L–58948L (2005). [CrossRef]
  40. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002). [CrossRef]
  41. F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996). [CrossRef]
  42. D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003). [CrossRef]
  43. A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004). [CrossRef] [PubMed]
  44. V. A. Loiko and V. P. Dick, “Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: Effect of correlation and polydispersity of droplets,” Opt. Spectrosc. 94, 595–599 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited