OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2342–2348

Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces

Daodang Wang, Yongying Yang, Chen Chen, and Yongmo Zhuo  »View Author Affiliations

Applied Optics, Vol. 50, Issue 16, pp. 2342-2348 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A point diffraction interferometer (PDI) with adjustable fringe contrast is presented for the high- precision testing of spherical surfaces. The polarizing components are employed in the PDI to transform the polarization states of the test and reference beams, and a good fringe contrast can be realized by adjusting the relative intensities of interfering waves. The proposed system is compact and simple in structure, and it provides a feasible way for high-precision testing of spherical surfaces with low reflectivity. The theory of the interferometer is introduced in detail, along with the properties of optical components employed in the system, numerical analysis of systematic error, and the corresponding calibration procedure. Compared with the testing results of the ZYGO interferometer, a high accuracy with RMS value about 0.0025 λ is achieved with the proposed interferometer. Finally, the error consideration in the experiment is discussed.

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 9, 2010
Revised Manuscript: February 15, 2011
Manuscript Accepted: March 15, 2011
Published: May 20, 2011

Daodang Wang, Yongying Yang, Chen Chen, and Yongmo Zhuo, "Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces," Appl. Opt. 50, 2342-2348 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Mantravadi and D. Malacara, “Newton, Fizeau, and Haidinger interferometers,” in Optical Shop Testing, 3rd ed., D.Malacara, ed. (Wiley, 2007). [CrossRef]
  2. R. N. Smartt and W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356(1975).
  3. G. Y. Wang, Y. L. Zheng, A. M. Sun, S. D. Wu, and Z. J. Wang, “Polarization pinhole interferometer,” Opt. Lett. 16, 1352–1354 (1991). [CrossRef] [PubMed]
  4. Q. Gong and J. M. Geary, “Modeling point diffraction interferometers,” Opt. Eng. 35, 351–356 (1996). [CrossRef]
  5. Q. Gong and W. Eichhorn, “Alignment and testing of piston and aberrations of a segmented mirror,” Proc. SPIE 5869, 586912 (2005). [CrossRef]
  6. J. E. Millerd, S. J. Martinek, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift, point-diffraction interferometer,” Proc. SPIE 5380, 422–429 (2004). [CrossRef]
  7. R. M. Neal and J. C. Wyant, “Polarization phase-shifting point-diffraction interferometer,” Appl. Opt. 45, 3463–3476(2006). [CrossRef] [PubMed]
  8. H. Kihm and S. W. Kim, “Oblique fiber optic diffraction interferometer for testing spherical mirrors,” Opt. Eng. 44, 125601 (2005). [CrossRef]
  9. T. Matsuura, S. Okagaki, T. Nakamura, Y. Oshikane, H. Inoue, M. Nakano, and T. Kataoka, “Measurement accuracy in phase-shifting point diffraction interferometer with two optical fibers,” Opt. Rev. 14, 401–405 (2007). [CrossRef]
  10. N. I. Chkhalo, E. B. Kluenkov, A. E. Pestov, D. G. Raskin, N. N. Salashchenko, and M. N. Toropov, “Manufacturing and investigation of objective lens for ultrahigh resolution lithography facilities,” Proc. SPIE 7025, 702505 (2008). [CrossRef]
  11. L. F. Chen, Y. Q. Ren, and J. Li, “Flat surface measurements on fiber point diffraction interferometer,” Opt. Eng. 49, 050503(2010). [CrossRef]
  12. T. Matsuura, K. Udaka, Y. Oshikane, H. Inoue, M. Nakano, K. Yamauchi, and T. Kataoka, “Spherical concave mirror measurement by phase-shifting point diffraction interferometer with two optical fibers,” Nucl. Instrum. Methods Phys. Res. A 616, 233–236 (2010). [CrossRef]
  13. K. Ota, T. Yamamoto, Y. Fukuda, K. Otaki, I. Nishiyama, and S. Okazaki, “Aspherical mirror measurement using a point diffraction interferometer,” Proc. SPIE 4688, 690–694 (2002). [CrossRef]
  14. K. Otaki, K. Ota, I. Nishiyama, T. Yamamoto, Y. Fukuda, and S. Okazaki, “Development of the point diffraction interferometer for extreme ultraviolet lithography: design, fabrication, and evaluation,” J. Vac. Sci. Technol. B 20, 2449–2458 (2002). [CrossRef]
  15. K. Otaki, T. Yamamoto, Y. Fukuda, K. Ota, I. Nishiyama, and S. Okazaki, “Accuracy evaluation of the point diffraction interferometer for extreme ultraviolet lithography aspheric mirror,” J. Vac. Sci. Technol. B 20, 295–300 (2002). [CrossRef]
  16. K. Otaki, Y. Zhu, M. Ishii, S. Nakayama, K. Murakami, and T. Gemma, “Rigorous wavefront analysis of the visible-light point diffraction interferometer for EUVL,” Proc. SPIE 5193, 182–190 (2004). [CrossRef]
  17. K. L. Duan and B. D. Lu, “A comparison of the vectorial nonparaxial approach with Fresnel and Fraunhofer approximations,” Optik (Jena) 115, 218–222 (2004). [CrossRef]
  18. A. K. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,” IEEE Trans. Semicond. Manuf. 8, 419–431 (1995). [CrossRef]
  19. W. C. Liu and M. W. Kowarz, “Vector diffraction from subwavelength optical disk structures: two-dimensional modeling of near-field profiles, far-field intensities, and detector signals from a DVD,” Appl. Opt. 38, 3787–3797 (1999). [CrossRef]
  20. W. Q. Zhang, “General ray-tracing formulas for crystal,” Appl. Opt. 31, 7328–7331 (1992). [CrossRef] [PubMed]
  21. W. Q. Zhang, “New phase shift formulas and stability of waveplate in oblique incident beam,” Opt. Commun. 176, 9–15 (2000). [CrossRef]
  22. M. A. Johnson, D. W. Phillion, G. E. Sommargren, T. A. Decker, J. S. Taylor, Y. Gomei, O. Kakuchi, and S. Takeuchi, “Construction and testing of wavefront reference sources for interferometry of ultra-precise imaging systems,” Proc. SPIE 5869, 58690P (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited