OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2349–2355

Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation

Barada K. Nayak, Keye Sun, Christian Rothenbach, and Mool C. Gupta  »View Author Affiliations

Applied Optics, Vol. 50, Issue 16, pp. 2349-2355 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a phenomenon of spontaneous formation of self-organized 2D periodic arrays of nanostructures (protrusions) by directly exposing a silicon surface to multiple nanosecond laser pulses. These self- organized 2D periodic nanostructures are produced toward the edge as an annular region around the circular laser spot. The heights of these nanostructures are around 500 nm with tip diameter ~ 100 nm . The period of the nanostructures is about 1064 nm , the wavelength of the incident radiation. In the central region of the laser spot, nanostructures are destroyed because of the higher laser intensity (due to the Gaussian shape of the laser beam) and accumulation of large number of laser pulses. Optical diffraction from these nanostructures indicates a threefold symmetry, which is in accordance with the observed morphological symmetries of these nanostructures.

© 2011 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(140.0140) Lasers and laser optics : Lasers and laser optics
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Design and Fabrication

Original Manuscript: December 13, 2010
Revised Manuscript: March 30, 2011
Manuscript Accepted: March 30, 2011
Published: May 20, 2011

Virtual Issues
May 27, 2011 Spotlight on Optics

Barada K. Nayak, Keye Sun, Christian Rothenbach, and Mool C. Gupta, "Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation," Appl. Opt. 50, 2349-2355 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366–5381 (1982). [CrossRef]
  2. A. Siegman and P. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22, 1384–1403 (1986). [CrossRef]
  3. J. Young, J. Preston, H. van Driel, and J. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983). [CrossRef]
  4. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003). [CrossRef]
  5. K. Affolter, W. Luthy, and M. Wittmer, “Interference effects on the surface of Nd:Y AG-Iaser-reacted Pd-silicide,” Appl. Phys. Lett. 36, 559–561 (1980). [CrossRef]
  6. B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng. 48, 966–973 (2010). [CrossRef]
  7. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007). [CrossRef]
  8. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A: Mater. Sci. Process. 89, 663–666 (2007). [CrossRef]
  9. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotech. 18, 195302(2007). [CrossRef]
  10. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008). [CrossRef]
  11. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010). [CrossRef]
  12. S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. A 73, 177–181 (2001). [CrossRef]
  13. T.-H. Her, R. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998). [CrossRef]
  14. A. Pedraza, J. Fowlkes, and D. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74, 2322–2324 (1999). [CrossRef]
  15. D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004). [CrossRef]
  16. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003). [CrossRef]
  17. T. Noriaki, S. Sumio, and M. Yoh, “New experimental evidence of surface ripples on gallium arsenide in laser annealing,” Appl. Phys. Lett. 42, 424–426 (1983). [CrossRef]
  18. P. A. Temple and M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. QE-17, 2067–2072 (1981). [CrossRef]
  19. M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low fluence ultraviolet laser radiation,” J. Appl. Phys. 73, 3516–3524 (1993). [CrossRef]
  20. Y. F. Guan, A. J. Pedraza, J. D. Fowlkes, and D. A. Joy, “Nanostructures produced by ultraviolet laser irradiation of silicon. II. Nanoprotrusions and nanoparticles,” J. Vac. Sci. Technol. B 22, 2836–2843 (2004). [CrossRef]
  21. Y. F. Guan, A. V. Melechko, A. J. Pedraza, M. L. Simpson, and P. D. Rack, “Non-lithographic organization of nickel catalyst for carbon nanofiber synthesis on laser-induced periodic surface structures,” Nanotech. 18, 335306–335307 (2007). [CrossRef]
  22. L. Longstreth-Spoor, J. Trice, H. Garcia, C. Zhang, and R. Kalyanaraman, “Nanostructure and microstructure of laser-interference-induced dynamic patterning of Co on Si,” J. Phys. D 39, 5149–5159 (2006). [CrossRef]
  23. K. Nishioka and S. Horita, “Periodic arrays of submicron Si and Ni dots on SiO2 fabricated using linearly polarized Nd:YAG pulsed laser,” Appl. Phys. A: Mater. Sci. Process. 91, 235–240 (2008). [CrossRef]
  24. F. Xiao, T. Wu, and P. Y. Chiou, “Near field photothermal printing of gold microstructures and nanostructures,” Appl. Phys. Lett. 97, 031112–031113 (2010). [CrossRef]
  25. Y. Lu, S. Theppakuttai, and S. C. Chen, “Marangoni effect in nanosphere-enhanced laser nanopatterning of silicon,” Appl. Phys. Lett. 82, 4143–4145 (2003). [CrossRef]
  26. A. Medvid, Y. Fukuda, A. Michko, P. Onufrievs, and Y. Anma, “2D lattice formation by YAG:Nd laser on the surface of Ge single crystal,” Appl. Surf. Sci. 244, 120–123 (2005). [CrossRef]
  27. S. Weber, “Fourier Transform Lab—Student Edition,” Software v.1.1.1, 18 March 2009: http://www.jcrystal.com/products/ftlse/index.htm).
  28. F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005). [CrossRef]
  29. N. O. Young, J. S. Goldstein, and M. J. Block, “The motion of bubbles in a vertical temperature gradient,” J. Fluid Mech. 6, 350–356 (1959). [CrossRef]
  30. R. S. Subramanian, “Slow migration of a gas bubble in a thermal gradient,” AIChE J. 27, 646–653 (1981). [CrossRef]
  31. M. Meyyappan and R. S. Subramanian, “Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface,” J. Colloid Interface Sci. 115, 206–219 (1987). [CrossRef]
  32. J. C. Xiej, H. Lin, J. H. Han, X. Q. Dong, W. R. Hu, A. Hirata, and M. Sakurai, “Experimental investigation on Marangoni drop migrations using drop shaft facility,” Int. J. Heat Mass Transfer 41, 2077–2081 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited