OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2391–2400

Driving plasmonic nanoantennas with triangular lasers and slot waveguides

Haroldo T. Hattori, Ziyuan Li, and Danyu Liu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 16, pp. 2391-2400 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic nanoantennas can generate high-intensity electric fields in a very small area. However, being passive devices, they need to be excited by external laser sources. The excitation of nanoantennas by semiconductor lasers can be inefficient and a significant amount of light may return back to the laser source after being scattered by the nanoantenna. In this paper, it is shown that the amount of light being returned to the semiconductor laser can be reduced by using dielectric slot waveguides. These waveguides can transport the incident light to the nanoantennas, but the amount of nondirectional back-scattered light is reduced after propagation through the slot waveguide.

© 2011 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 22, 2010
Revised Manuscript: March 19, 2011
Manuscript Accepted: March 21, 2011
Published: May 24, 2011

Haroldo T. Hattori, Ziyuan Li, and Danyu Liu, "Driving plasmonic nanoantennas with triangular lasers and slot waveguides," Appl. Opt. 50, 2391-2400 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002). [CrossRef]
  3. H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, “In-plane coupling of light from InP-based photonic crystal band-edge lasers,” IEEE J. Quantum Electron. 43, 279–286 (2007). [CrossRef]
  4. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069–3076 (2005). [CrossRef] [PubMed]
  5. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210–214 (2005). [CrossRef]
  6. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003). [CrossRef]
  7. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic-crystal laser,” Opt. Express 12, 1562–1568 (2004). [CrossRef] [PubMed]
  8. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP/InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997). [CrossRef]
  9. M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999). [CrossRef]
  10. H. T. Hattori, E. Touraille, C. Seassal, P. Rojo-Romeo, X. Letartre, G. Hollinger, M. Heitzmann, L. Mollard, E. Jalaguier, and J. M. Fedeli, “Heterogenous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett. 18, 223–225 (2006). [CrossRef]
  11. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182(2006). [CrossRef]
  12. S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 35, L411–L413(1996). [CrossRef]
  13. S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys. 36, L76–L78 (1997). [CrossRef]
  14. Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100–107 (2001). [CrossRef]
  15. Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001). [CrossRef]
  16. H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt. 47, 2178–2185 (2008). [CrossRef] [PubMed]
  17. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479–481 (2004). [CrossRef]
  18. H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi single-mode operation,” IEEE Photon. Technol. Lett. 21, 359–361 (2009). [CrossRef]
  19. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  20. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319(2006). [CrossRef] [PubMed]
  21. J. C. Weeber, M. U. Gonzales, A. L. Bouldrion, and A. Dereux, “Surface plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87, 221101 (2005). [CrossRef]
  22. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express 17, 20878–20884(2009). [CrossRef] [PubMed]
  23. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009). [CrossRef] [PubMed]
  24. D. Y. Liu, H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, “Increasing the coupling efficiency of a microdisk laser to waveguides by using well designed spiral structures,” J. Appl. Phys. 107, 043105 (2010). [CrossRef]
  25. Fullwave 4.0 RSOFT design group, 1999, http://www.rsoftdesign.com.
  26. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void structure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  27. R. Guider, N. Daldosso, A. Pitanti, E. Jordana, J. M. Fedeli, and L. Pavesi, “NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators,” Opt. Express 17, 20762–20770 (2009). [CrossRef] [PubMed]
  28. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17, 1527–1534 (2009). [CrossRef] [PubMed]
  29. R. E. Collin, Foundations for Microwave Engineering(Wiley, 2000).
  30. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, 1998).
  31. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  32. N. Engheta, A. Salandrino, and A. Alu, “Circuits elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  33. A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008). [CrossRef] [PubMed]
  34. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides and nanoantennas,” Opt. Express 17, 5925–5932 (2009). [CrossRef] [PubMed]
  35. W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010). [CrossRef] [PubMed]
  36. P. L. Gareso, M. Buda, L. Fu, H. H. Tan, C. Jagadish, L. Dao, L. V. Wen, and P. Hannaford, “Proton irradiation-induced intermixing in InxGa1−xAs/InP quantum wells—the effect of composition,” Semicond. Sci. Technol. 21, 1441–1446(2006). [CrossRef]
  37. H. Altug and J. Vuckovic, “Photonic crystal nanocavity array laser,” Opt. Express 13, 8819–8828 (2005). [CrossRef] [PubMed]
  38. D. Y. Liu, H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, “Single-mode operation of a large optically pumped triangular laser with lateral air trenches,” J. Opt. Soc. Am. B 26, 1417–1422 (2009). [CrossRef]
  39. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited