OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2784–2792

Determination of quantum efficiency in fluorescing turbid media

Ludovic Gustafsson Coppel, Mattias Andersson, and Per Edström  »View Author Affiliations

Applied Optics, Vol. 50, Issue 17, pp. 2784-2792 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is proposed to estimate the optical parameters in a fluorescing turbid medium with strong absorption for which traditional Kubelka–Munk theory is not applicable, using a model for the radiative properties of optically thick fluorescent turbid media of finite thickness proposed in 2009[ J. Opt. Soc. Am. A 26, 1896 (2009)]. The method is successfully applied to uncoated papers with different thicknesses. It is found that the quantum efficiency of fluorescent whitening agents (FWAs) is nearly independent of the fiber type, FWA type, FWA concentration, and filler additive concentration used in this study. The results enable an estimation of the model parameters as function of the FWA concentration and substrate composition. This is necessary in order to use the model for optimizing fluorescence in the paper and textile industries.

© 2011 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(330.1690) Vision, color, and visual optics : Color

ToC Category:
Physical Optics

Original Manuscript: January 7, 2011
Revised Manuscript: April 9, 2011
Manuscript Accepted: April 12, 2011
Published: June 9, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Ludovic Gustafsson Coppel, Mattias Andersson, and Per Edström, "Determination of quantum efficiency in fluorescing turbid media," Appl. Opt. 50, 2784-2792 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Lamperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, 1977).
  2. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20, 714–727 (2003). [CrossRef]
  3. D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D 36, 1722 (2003). [CrossRef]
  4. M. Sormaz, T. Stamm, S. Mourad, and P. Jenny, “Stochastic modeling of light scattering with fluorescence using a monte carlo-based multiscale approach,” J. Opt. Soc. Am. A 26, 1403–1413 (2009). [CrossRef]
  5. L. G. Coppel, P. Edström, and M. Lindquister, “Open source Monte Carlo simulation platform for particle level simulation of light scattering from generated paper structures,” in Proc. Papermaking Res. Symp., E. Madetoja, H.Niskanen and J.Hämäläinen, eds. (Kuopio, 2009).
  6. E. Allen, “Fluorescent white dyes: calculation of fluorescence from reflectivity values,” J. Opt. Soc. Am. 54, 506–515 (1964). [CrossRef]
  7. J. E. Bonham, “Fluorescence and Kubelka-Munk theory,” Color Res. Appl. 11, 223–230 (1986). [CrossRef]
  8. T. Shakespeare and J. Shakespeare, “A fluorescent extension to the Kubelka-Munk model,” Color Res. Appl. 28, 4–14(2003). [CrossRef]
  9. L. Fukshansky and N. Kazarinova, “Extension of the Kubelka-Munk theory of light propagation in intensely scattering materials to fluorescent media,” J. Opt. Soc. Am. 70, 1101–1111(1980). [CrossRef]
  10. A. A. Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896–1900(2009). [CrossRef]
  11. A. A. Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media: errata,” J. Opt. Soc. Am. A 27, 2084–2084 (2010). [CrossRef]
  12. R. Donaldson, “Spectrophotometry of fluorescent pigments,” Br. J. Appl. Phys. 5, 210–214 (1954). [CrossRef]
  13. American Society for Testing and Materials (ASTM), “Standard practice for obtaining bispectral photometric data for evaluation of fluorescent color,” ASTM E2153-01 (ASTM, 2006).
  14. International Organization for Standardization (ISO), “Paper and board—determination of CIE whiteness, d65/10 (outdoor daylight),” ISO 11475(ISO, 2004).
  15. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Soc. Am. 38, 448–457(1948). [CrossRef] [PubMed]
  16. P. Kubelka, “New contributions of the optics of intensely light-scattering materials. Part II: Nonhomogeneous layers,” J. Opt. Soc. Am. 44, 330–335 (1954). [CrossRef]
  17. E. Allen, “Fluorescent colorants: true reflectance, quantum efficiency and match formulation,” J. Color Appearance 1, 28–32 (1972).
  18. J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the national research council of canada for high-accuracy fluorescence measurements,” Acta Chim. Slov. 380, 193–209 (1999). [CrossRef]
  19. P. Turunen, J. Kinnunen, and J. Mutanen, “Modeling of fluorescent color mixing by regression analysis,” in Fourth European Conference on Colour in Graphics, Imaging, and MCS/10 Vision 12th International Symposium on Multispectral Colour Science (Society for Imaging Science and Technology, 2010), pp. 94–100.
  20. International Organization for Standardization (ISO), Determination of light scattering and absorption coefficients (using Kubelka-Munk theory),” ISO 9416 (ISO, 1994).
  21. M. Neuman and P. Edström, “Anisotropic reflectance from turbid media. i. theory,” J. Opt. Soc. Am. A 27, 1032–1039 (2010). [CrossRef]
  22. M. Neuman and P. Edström, “Anisotropic reflectance from turbid media. ii. measurements,” J. Opt. Soc. Am. A 27, 1040–1045 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited