OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 18 — Jun. 20, 2011
  • pp: 3021–3027

Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography

Avner Safrani and Ibrahim Abdulhalim  »View Author Affiliations


Applied Optics, Vol. 50, Issue 18, pp. 3021-3027 (2011)
http://dx.doi.org/10.1364/AO.50.003021


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.

© 2011 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.1650) Imaging systems : Coherence imaging
(110.4500) Imaging systems : Optical coherence tomography
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(180.0180) Microscopy : Microscopy

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 19, 2011
Revised Manuscript: March 27, 2011
Manuscript Accepted: April 30, 2011
Published: June 16, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Avner Safrani and Ibrahim Abdulhalim, "Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography," Appl. Opt. 50, 3021-3027 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-18-3021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38, 2519–2535 (2005). [CrossRef]
  3. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  4. W.Krug, J.Rienitz, and G.Schultz, eds., Contributions to Interference Microscopy (Hilger & Watts, 1964).
  5. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” Proc. SPIE 775, 233–247 (1987).
  6. D. Gale, M. I. Pether, and J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996). [CrossRef] [PubMed]
  7. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002). [CrossRef]
  8. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002). [CrossRef] [PubMed]
  9. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002). [CrossRef] [PubMed]
  10. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816–818(2003). [CrossRef] [PubMed]
  11. G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351–1353 (2005). [CrossRef] [PubMed]
  12. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387–1392 (2005). [CrossRef] [PubMed]
  13. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006). [CrossRef] [PubMed]
  14. M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683(2009). [CrossRef]
  15. P. de Groot and X. Colonna de Lega, “Signal modeling for low-coherence height-scanning interference microscopy,” Appl. Opt. 43, 4821–4830 (2004). [CrossRef] [PubMed]
  16. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004). [CrossRef] [PubMed]
  17. L. Yu and M. K. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004). [CrossRef] [PubMed]
  18. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A: Pure Appl. Opt. 8, 952–958(2006). [CrossRef]
  19. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39, 4107–4111(2000). [CrossRef]
  20. V. Ryabukho, D. Lyakin, and M. Lobachev, “Longitudinal pure spatial coherence of a light field with wide frequency and angular spectra,” Opt. Lett. 30, 224–226 (2005). [CrossRef] [PubMed]
  21. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993). [CrossRef]
  22. S. H. Wiersma and T. D. Visser, “Defocusing of converging electromagnetic wave by a plane dielectric interface,” J. Opt. Soc. Am. 13, 320–325 (1996). [CrossRef]
  23. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990). [CrossRef] [PubMed]
  24. A. Dubois, G. Moneron, and C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region,” Opt. Commun. 266, 738–743 (2006). [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 77–78 and 157–158.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited