OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 2 — Jan. 10, 2011
  • pp: 170–176

Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing

Jose M. Castro, Erich de Leon, Jennifer K. Barton, and Raymond K. Kostuk  »View Author Affiliations


Applied Optics, Vol. 50, Issue 2, pp. 170-176 (2011)
http://dx.doi.org/10.1364/AO.50.000170


View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffracted image patterns from volume holograms that are used in volume holographic imaging systems (VHISs) are investigated. It is shown that, in VHISs, prior information about the shape and spectral properties of the diffracted patterns is important not only to determine the curvature and field of view of the image, but also for image registration and noise removal. A new methodology to study numerically and analytically the dependence of VHIS diffraction patterns with the hologram construction parameters and the readout wavelength is described. Modeling and experimental results demonstrate that, in most cases, VHIS diffracted shapes can be accurately represented by hyperbolas.

© 2011 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(110.0110) Imaging systems : Imaging systems

ToC Category:
Holography

History
Original Manuscript: September 23, 2010
Revised Manuscript: November 18, 2010
Manuscript Accepted: November 19, 2010
Published: January 7, 2011

Citation
Jose M. Castro, Erich de Leon, Jennifer K. Barton, and Raymond K. Kostuk, "Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing," Appl. Opt. 50, 170-176 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-2-170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Momtahan, C. R. Hsieh, A. Karbaschi, A. Adibi, M. E. Sullivan, and D. J. Brady, “Spherical beam volume holograms for spectroscopic applications: modeling and implementation,” Appl. Opt. 43, 6557–6567 (2004). [CrossRef]
  2. C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, “Compact Fourier-transform volume holographic spectrometer for diffuse source spectroscopy,” Opt. Lett. 30, 836–838(2005). [CrossRef] [PubMed]
  3. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in transmission geometry,” Appl. Opt. 43, 1533–1551 (2004). [CrossRef] [PubMed]
  4. Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33 (2005). [CrossRef]
  5. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856(2002). [CrossRef]
  6. Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial filters,” Opt. Lett. 3, 66–568 (2008). [CrossRef]
  7. P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng 49, 043001 (2010). [CrossRef]
  8. A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004). [CrossRef] [PubMed]
  9. P. Wissmann, S. B. Oh, and G. Barbastathis, “Simulation and optimization of volume holographic imaging systems in Zemax,” Opt. Express 16, 7516–7524 (2008). [CrossRef] [PubMed]
  10. Y. Lou, J. M. Castro, J. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiment of non-uniform multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010). [CrossRef]
  11. S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane reference volume holograms,” Appl. Opt. 48, 5984–5996(2009). [CrossRef] [PubMed]
  12. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  13. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).
  14. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983). [CrossRef]
  15. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  16. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  17. W. K. Maeda, “Edge-illumination gratings in PQ-doped PMMA for OCDMA applications,” Master’s thesis (The University of Arizona, 2005).
  18. “Conics Section,” in http://en.wikipedia.org/wiki/Conic_section.
  19. “Rotation matrix,” in http://en.wikipedia.org/wiki/Rotation_matrix.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited